首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion partitioning is a method for progressively dismantling small biological entities for observation of their internal structures. The method is particularly well suited to use with the electron microscope. Objects to be partitioned are air-dried between two preformed plastic films resulting in envelopment of the objects. On separating the films the objects are partitioned. Partitioned E. coli bacteria reveal a variety of structures which change markedly with culture age. Organisms from young cultures have a water-retaining gelatinous matrix in which radially striated discs, fabric-like structures, and microsomes are found. Older cultures are less anatomically complex. The T2 bacteriophage is shown to be composed of an outer limiting membrane and a cohesive semisolid fibrillar body substance, presumably nucleic acid, which can be drawn as a strand from the bacteriophage body.  相似文献   

2.
Problems of biochemical organization]   总被引:1,自引:0,他引:1  
Biological organization has been defined as a unity of structure, function and regulation. Biological organization of hierarchical multilevel biological systems is represented by a hierarchy of functioning controllable structures. The hierarchy of levels of material organization predetermines the existence of a hierarchy of regulatory mechanisms. Biochemical organization involves the levels of material organization corresponding to biomacromolecules, supramolecular complexes and cellular organelles. The levels of biomacromolecules and supramolecular structures effectuating elementary functions and controlled by basic regulatory mechanisms occupy key positions in biological systems. These levels play the role of standard functional blocks; their combination leads to hierarchically higher structural levels (cell, tissue, organ, systems of organs, organism) performing more complex functions and controlled by hierarchically more important regulatory mechanisms. The peculiarities of regulation of biological systems that are due to the existence of a hierarchy of regulatory mechanisms are discussed.  相似文献   

3.
The language of RNA: a formal grammar that includes pseudoknots   总被引:9,自引:0,他引:9  
MOTIVATION: In a previous paper, we presented a polynomial time dynamic programming algorithm for predicting optimal RNA secondary structure including pseudoknots. However, a formal grammatical representation for RNA secondary structure with pseudoknots was still lacking. RESULTS: Here we show a one-to-one correspondence between that algorithm and a formal transformational grammar. This grammar class encompasses the context-free grammars and goes beyond to generate pseudoknotted structures. The pseudoknot grammar avoids the use of general context-sensitive rules by introducing a small number of auxiliary symbols used to reorder the strings generated by an otherwise context-free grammar. This formal representation of the residue correlations in RNA structure is important because it means we can build full probabilistic models of RNA secondary structure, including pseudoknots, and use them to optimally parse sequences in polynomial time.  相似文献   

4.
Adhesion partitioning is a method for progressively dismantling small biological entities for observation of their internal structures. The method is particularly well suited to use with the electron microscope. Objects to be partitioned are air-dried between two preformed plastic films resulting in envelopment of the objects. On separating the films the objects are partitioned. Partitioned E. coli bacteria reveal a variety of structures which change markedly with culture age. Organisms from young cultures have a water-retaining gelatinous matrix in which radially striated discs, fabric-like structures, and microsomes are found. Older cultures are less anatomically complex. The T2 bacteriophage is shown to be composed of an outer limiting membrane and a cohesive semisolid fibrillar body substance, presumably nucleic acid, which can be drawn as a strand from the bacteriophage body.  相似文献   

5.
In this paper we define two types of formal biological entities corresponding to biological levels of organization, thebiolons and theorgons, the properties of which are phenomenologically analyzed and discussed.We examine then, in a rather speculative manner, how some characteristics of these entities may suggest analogies between properties of biological systems and some special features of quantum systems.These analogies are principally related to the specific roles played by these entities (relatively to matter-energy, for orgons, and to information, for biolons) in a biological system. They are funded on the formal equivalence between the temporal variations associated to the development of the orgons and the biolons, respectively, and the statistical distribution over the available energy levels of the two main types of quantum entities, the fermions and the bosons (the former being associated to the constitution of matter and the latter to the effects of interactions).This formal comparison leads us to put into correspondences the developmental duration in biological systems with the energetic structuration in quantum ones and the related characteristic times of the former with the temperature of the latter. We discuss briefly these correspondences.  相似文献   

6.
A synergetic law, being of common physicochemical and biological sense, is formulated: any evolving system that possesses an excess of free energy and elements with chiral asymmetry, while being within one hierarchical level, is able to change the type of symmetry in the process of self-organization increasing its complexity but preserving the sign of prevailing chirality (left — L or right — D twist). The same system tends to form spontaneously a sequence of hierarchical levels with alternating chirality signs of de novo formed structures and with an increase of the structures’ relative scales. In living systems, the hierarchy of conjugated levels of macromolecular structures that begins from the “lowest” asymmetric carbon serves as an anti-entropic factor as well as the structural basis of “selected mechanical degrees of freedom” in molecular machines. During transition of DNA to a higher level of structural and functional organization, regular alterations of the chirality sign D-L-D-L and L-D-L-D for DNA and protein structures, respectively, are observed. Sign-alternating chiral hierarchies of DNA and protein structure, in turn, form a complementary conjugated chiral pair that represents an achiral invariant that “consummates” the molecular-biological block of living systems. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development though a series of chiral bifurcations. The hierarchy of macromolecular structures demarcated by the chirality sign predetermined the possibility of the “block” character of biological evolution.  相似文献   

7.
A notion of organization of time similar to the notion of organization of space in architecture has been introduced. The level and pattern of organization of time in biological systems differs from that in physical and chemical systems, which presents an independent problem. Analysis of the problem leads to a new definition of life as a process of renormalization of possibilities described by a Bayes formula. This definition leads to the notion of self-monitoring as a property of every biological system, and of complicated structure of the biological present, including the physical past and physical future. This is naturally followed by determination by far past, and, hence, memory, and determination by future, i.e. preadaptation, surpassing reflection, aim-setting etc. A direct dependence of a number of elements of a complex system on its stability has been demonstrated. The self-monitoring and organization of time can be traced at various levels of biological hierarchy from intracellular to biosphere level.  相似文献   

8.
A structured approach is discussed for analysing hierarchy in the organization of biological and physical systems. The need for a structured approach follows from the observation that many hierarchies in the literature apply conflicting hierarchy rules and include ill-defined systems. As an alternative, we suggest a framework that is based on the following analytical steps: determination of the succession stage of the universe, identification of a specific system as part of the universe, specification of external influences on a system's creation and analysis of a system's internal organization. At the end, the paper discusses practical implications of the proposed method for the analysis of system organization and hierarchy in biology, ecology and physics.  相似文献   

9.
Individual-based modeling is widely applied to investigate the ecological mechanisms driving microbial community dynamics. In such models, the population or community dynamics emerge from the behavior and interplay of individual entities, which are simulated according to a predefined set of rules. If the rules that govern the behavior of individuals are based on generic and mechanistically sound principles, the models are referred to as next-generation individual-based models. These models perform particularly well in recapitulating actual ecological dynamics. However, implementation of such models is time-consuming and requires proficiency in programming or in using specific software, which likely hinders a broader application of this powerful method. Here we present McComedy, a modeling tool designed to facilitate the development of next-generation individual-based models of microbial consumer-resource systems. This tool allows flexibly combining pre-implemented building blocks that represent physical and biological processes. The ability of McComedy to capture the essential dynamics of microbial consumer-resource systems is demonstrated by reproducing and furthermore adding to the results of two distinct studies from the literature. With this article, we provide a versatile tool for developing next-generation individual-based models that can foster understanding of microbial ecology in both research and education.  相似文献   

10.
This review focusses on recent developments in the experimental study of polyion-induced charged colloidal particle aggregation, with particular emphasis on the formation of cationic liposome clusters induced by the addition of anionic adsorbing polyions. These structures can be considered, under certain points of view, a new class of colloidal systems, with intriguing properties that opens interesting and promising new opportunities in various biotechnological applications. Lipidic structures of different morphologies and different structural complexities interacting with oppositely charged polyions give rise to a rich variety of self-assembled structures that present various orders of hierarchy in the sense that, starting from a basic level, for example a lipid bilayer, they arrange themselves into superstructures as, for example, multilamellar stacks or liquid-crystalline structures. These structures can be roughly divided into two classes according to the fact that the elementary structure, involved in building a more complex one, keeps or does not keeps its basic arrangement. To the first one, belong those aggregates composed by single structures that maintain their integrity, for example, lipidic vesicles assembled together by an appropriate external agent. The second one encompasses structures that do not resemble the ones of the original objects which form them, but, conversely, derive from a deep restructuring and rearrangement process, where the original morphology of the initial constitutive elements is completely lost. In this review, I will only briefly touch on higher level hierarchy structures and I will focus on the assembling processes involving preformed lipid bilayer vesicles that organize themselves into clusters, the process being induced by the adsorption of oppositely charged polyions. The scientific interest in polyion-induced liposome aggregates is two-fold. On the one hand, in soft-matter physics, they represent an interesting colloidal system, governed by a balance between long-range electrostatic repulsion and short-range attraction, resulting in relatively large, equilibrium clusters, whose size and overall charge can be continuously tunable by simple environmental parameters. These structures present a variety of behaviors with a not yet completely understood phenomenology. On the other hand, the resulting structures possess some peculiar properties that justify their employment as drug delivery systems. Bio-compatibility, stability and ability to deliver various bio-active molecules and, moreover, their environmental responsiveness make liposome-based clusters a versatile carrier, with possibility of efficient targeting to different organs and tissues. Among the different structures made possible by the aggregating mechanism (cationic particles stuck together by anionic polyions or conversely anionic particles stuck together by cationic polyions), I will review the main experimental evidences for the existence of cationic liposome clusters. Especial attention is paid to our own work, mainly aimed at the characterization of these novel structures from a physical point of view.  相似文献   

11.
Architectures of biological complexity   总被引:3,自引:2,他引:1  
Three features contribute to the complexity of an entity: numberof parts, their order, and their iteration. Many functionalbiological entities are complex when measured by those attributes,and although they are produced in tree-like architectures, theorganizational structures that permit them to function are inthe form of hierarchies. Natural hierarchies can be thoughtof as organizing structures that are emergent properties ofcomplex functional entities, and which are transformed fromtrees by process networks. For example, hierarchies are observedin the architecture of metazoan bodies (the somatic hierarchy)and in the biotic structure of ecogeographic units (the ecologicalhierarchy). As the metazoan developmental genome is quite complexand has been evolved through tree-like processes, it must harborat least one hierarchy, which is most clearly indicated in thedevelopmental processes that create the somatic hierarchy. Formulticellular organisms, the processes that serve to transformtrees of gene expression events into a somatic hierarchy haveproduced complicated signaling networks whose histories canprobably be recovered in general outline.  相似文献   

12.
Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific “omics” data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.  相似文献   

13.
14.
15.
This paper analyses relationships between probabilities of events happening in biological systems (or probabilistic disposition of systems) and cognitive properties of biological entities comprising such systems. Two kinds of cognitive properties are identified as relevant to the current problem: the ability to respond differently against different configurations of the environment (discriminability of cognition), and the ability to make an appropriate response to maintain a particular relation with the environment (selectivity of cognition). A basic framework bridging the two features of living systems, probabilistic disposition and the cognitive properties, is presented towards a general theory explaining the process generating probabilities of biological events. In this framework, a deterministic model of a system of entities is developed, in which objects are described as subjects that cognize events (i.e. entities as cognizers). Cognition is used in a wider sense, including not only biotic but also abiotic, and cognizers are conceptually distinguished from the meta-observer who describes the system externally. Based on this perspective, this paper seeks to explicate how events can occur in an uncertain, probabilistic manner, if observed from a cognizer viewpoint, even under a deterministic system. Each cognizer is identified with both the set of states that are actually taken, and its motion function which maps its state uniquely to a successor state depending on the current states of itself and of the rest of cognizers constituting the system. The model analysis reveals that the cognitive properties, discriminability and selectivity, of a cognizer can contribute to determining the probability of an event encountered by the cognizer itself-in particular, discrimination reducing the uncertainty in events occurrence for the cognizer. Biological implication of this result is discussed focusing on the concept of the probability of survival and reproduction.  相似文献   

16.
Observed semiconductor properties of biological material in vitro indicate possible involvement of semiconduction in biological processes. Since in inorganic semiconductors solid-state plasma occurs, it is hypothesized that in organic semiconductors solid-state plasma similarly occurs. Some results of experimental investigation of resonant effects of microwaves in biological systems are considered in the light of that hypothesis. The conditions necessary for the existence of physical plasma in biological solid structures are discussed, and certain parameters of physical plasma in these structures are evaluated. Its is proposed that microwave radiation may support or damp plasma oscillations, thereby stimulating or suppressing biological functions.  相似文献   

17.
We study the emergence of collective spatio-temporal objects in biological systems by representing individually the elementary interactions between their microscopic components. We use the immune system as a prototype for such interactions. The results of this detailed explicit analysis are compared with the traditional procedure of representing the collective dynamics in terms of densities that obey partial differential equations. The simulations show even for very simple elementary reactions the spontaneous emergence of localized complex structures, from microscopic noise. In turn the effective dynamics of these structures affects the average behaviour of the system in a very decisive way: systems which would according to the differential equations approximation die, display in reality a very lively behaviour. As the optimal modelling method we propose a mixture of microscopic simulation systems describing each reaction separately, and continuous methods describing the average behaviour of the agents.  相似文献   

18.
Molecules into Cells: Specifying Spatial Architecture   总被引:2,自引:0,他引:2       下载免费PDF全文
A living cell is not an aggregate of molecules but an organized pattern, structured in space and in time. This article addresses some conceptual issues in the genesis of spatial architecture, including how molecules find their proper location in cell space, the origins of supramolecular order, the role of the genes, cell morphology, the continuity of cells, and the inheritance of order. The discussion is framed around a hierarchy of physiological processes that bridge the gap between nanometer-sized molecules and cells three to six orders of magnitude larger. Stepping stones include molecular self-organization, directional physiology, spatial markers, gradients, fields, and physical forces. The knowledge at hand leads to an unconventional interpretation of biological order. I have come to think of cells as self-organized systems composed of genetically specified elements plus heritable structures. The smallest self that can be fairly said to organize itself is the whole cell. If structure, form, and function are ever to be computed from data at a lower level, the starting point will be not the genome, but a spatially organized system of molecules. This conclusion invites us to reconsider our understanding of what genes do, what organisms are, and how living systems could have arisen on the early Earth.  相似文献   

19.
A living cell is not an aggregate of molecules but an organized pattern, structured in space and in time. This article addresses some conceptual issues in the genesis of spatial architecture, including how molecules find their proper location in cell space, the origins of supramolecular order, the role of the genes, cell morphology, the continuity of cells, and the inheritance of order. The discussion is framed around a hierarchy of physiological processes that bridge the gap between nanometer-sized molecules and cells three to six orders of magnitude larger. Stepping stones include molecular self-organization, directional physiology, spatial markers, gradients, fields, and physical forces. The knowledge at hand leads to an unconventional interpretation of biological order. I have come to think of cells as self-organized systems composed of genetically specified elements plus heritable structures. The smallest self that can be fairly said to organize itself is the whole cell. If structure, form, and function are ever to be computed from data at a lower level, the starting point will be not the genome, but a spatially organized system of molecules. This conclusion invites us to reconsider our understanding of what genes do, what organisms are, and how living systems could have arisen on the early Earth.  相似文献   

20.
The formal structure of evolutionary theory is based upon the dynamics of alleles, individuals and populations. As such, the theory must assume the prior existence of these entities. This existence problem was recognized nearly a century ago, when DeVries (1904,Species and Varieties: Their Origin by Mutation) stated. “Natural selection may explain the survival of the fittest, but it cannot explain the arrival of the fittest.” At the heart of the existence problem is determining how biological organizations arise in ontogeny and in phylogeny. We develop a minimal theory of biological organization based on two abstractions from chemistry. The theory is formulated using λ-calculus, which provides a natural framework capturing (i) the constructive feature of chemistry, that the collision of molecules generates specific new molecules, and (ii) chemistry's diversity of equivalence classes, that many different reactants can yield the same stable product. We employ a well-stirred and constrained stochastic flow reactor to explore the generic behavior of large numbers of applicatively interacting λ-expressions. This constructive dynamical system generates fixed systems of transformation characterized by syntactical and functional invariances. Organizations are recognized and defined by these syntactical and functional regularities. Objects retained within an organization realize and algebraic structure and possess a grammar which is invariant under the interaction between objects. An organization is self-maintaining, and is characterized by (i) boundaries established by the invariances, (ii) strong self-repair capabilities responsible for a robustness to perturbation, and (iii) a center, defined as the smallest kinetically persistent and self-maintaining generator set of the algebra. Imposition of different boundary conditions on the stochastic flow reactor generates different levels of organization, and a diversity of organizations within each level. Level 0 is defined by selfcopying objects or simple ensembles of copying objects. Level 1 denotes a new object class, whose objects are self-maintaining organizations made of Level 0 objects, and Level 2 is defined by self-maintaining metaorganizations composed of Level 1 organizations. These results invite analogy to the history of life, that is, to the progression from self-replication to self-maintaining procaryotic organizations to ultimately yield self-maintaining eucaryotic organizations. In our system self-maintaining organizations arise as a generic consequence of two features of chemistry, without appeal to natural selection. We hold these findings as calling for increased attention to the structural basis of biological order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号