首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The physiologic regulation of aldosterone secretion is dependent on extracellular calcium and appears to be mediated by increases in cytosolic free calcium concentration in the zona glomerulosa cell. A specific role for voltage-dependent calcium channels was suggested by previous studies with the calcium channel antagonist verapamil. We therefore studied the [3H]nitrendipine calcium channel binding site in adrenal capsules. These studies revealed a single class of saturable, high affinity sites with KD = .26 +/- .04 nM and Bmax = 105 +/- 5.7 fmol/mg protein. Specific binding of [3H]nitrendipine was inhibited by calcium channel antagonists with potencies nitrendipine = nifedipine much greater than verapamil, while diltiazem had no inhibitory effect. In the rat, binding sites for [3H]nitrendipine were located in the adrenal capsule and medulla and were undetectable in the zona fasciculata. Physiologic studies with collagenase-dispersed adrenal glomerulosa cells demonstrated that nifedipine selectively inhibited angiotensin-II and potassium-stimulated steroidogenesis. These observations suggest both a pharmacologic and physiologic role for the nitrendipine binding site in aldosterone production.  相似文献   

2.
We tested whether the hydantoin muscle relaxants dantrolene, azumolene, or aminodantrolene could alter the binding of [3H]PN200-110 to transverse tubule dihydropyridine receptors or the binding of [3H]ryanodine to junctional sarcoplasmic reticulum Ca2+ release channels. All three drugs inhibited [3H]PN200-110 binding with azumolene (IC50 approximately 20 microM) 3-5 times more potent than dantrolene or aminodantrolene. In contrast, 100 microM azumolene and dantrolene produced a small inhibition of [3H]ryanodine binding (less than 25%) while aminodantrolene was essentially inert. Hence there was a preferential interaction of hydantoins with dihydropyridine receptors instead of ryanodine receptors. Skeletal muscle dihydropyridine receptors may participate in the mechanism of action of dantrolene and azumolene.  相似文献   

3.
Exercise is associated with a net loss of K+ from the working muscles and an increased plasma K+ concentration, indicating that the capacity for intracellular reaccumulation of K+ is exceeded. Training reduces the exercise-induced rise in plasma K+, and an increased plasma [K+] may interfere with physical performance. Since the clearing of K+ from the extracellular space depends on the capacity for active K+ uptake in skeletal muscle, the effects of training and inactivity on the total concentration of (Na+ + K+)-ATPase was determined. Following 6 weeks of swim training, the concentration of [3H]ouabain-binding sites in rat hindlimb muscles was up to 46% (P less than 0.001) higher than in those obtained from age-matched controls. Whereas muscle Na+, K+ contents remained unchanged, the concentration of citrate synthase increased by up to 76% (P less than 0.001). Training induced no change in the [3H]ouabain-binding-site concentration in the diaphragm, but in the heart ventricles, the K+-dependent 3-O-methylfluorescein phosphatase activity increased by 20% (P less than 0.001). Muscle inactivity induced by denervation, plaster immobilisation or tenotomy reduced the [3H]ouabain-binding-site concentration by 20-30% (P less than 0.02-0.001) within 1 week. In conclusion, training leads to a significant and reversible rise in the concentration of (Na+ + K+)-ATPase in muscle cells. This may be of importance for the beneficial effects on physical performance by improving the maximum capacity for K+ clearance.  相似文献   

4.
5.
M E Goldman  J J Pisano 《Life sciences》1985,37(14):1301-1308
Phospholipase A2 from several sources inhibited [3H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A2 enzymatic activity, shifted the bee venom phospholipase A2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A2 (10 ng/ml) for 15 min caused a 2-fold increase in the Kd without changing the Bmax compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the Kd but significantly decreased the Bmax to 71% the value for untreated membranes. [3H]Nitrendipine, preincubated with bee venom phospholipase A2, was recovered and found to be fully active, indicating that the phospholipase A2 did not modify the ligand. It is concluded that phospholipase A2 acts on the membrane at or near the [3H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site.  相似文献   

6.
The actions of a series of 15 Ca2+ channel antagonists including D-600, nifedipine, and diltiazem were examined against K+ depolarization and muscarinic receptor induced responses in guinea pig bladder smooth muscle. Responses of bladder are very dependent upon extracellular Ca2+ and sensitive to the Ca2+ channel antagonists, the tonic component more than the phasic component of response. Regardless of stimulant, K+ or methylfurmethide (MF), or component of response, the same rank order of antagonist activities is expressed, suggestive of a single structure-activity relationship and the existence of a single category of binding site which may, however, exist in several affinity states. High affinity binding of [3H]nitrendipine (KD = 1.1 X 10(-10) M) occurs in bladder membranes, and similar high affinity binding was found in microsomal preparations from other smooth muscles including guinea pig and rat lung, rat vas deferens, uterus, and stomach. [3H]nitrendipine binding in the bladder was sensitive to displacement by other 1,4-dihydropyridines, paralleling their pharmacologic activities and showing excellent agreement with binding data previously obtained for guinea pig ileal smooth muscle. Comparison of pharmacologic data for inhibition of K+- and MF-induced responses by a common series of Ca2+ channel antagonists in bladder and ileum revealed excellent correlations. Neither pharmacologic nor binding studies suggest significant differences in Ca2+ channel antagonist properties in smooth muscle from bladder and intestine.  相似文献   

7.
Binding studies with the 1,4-dihydropyridine calcium channel antagonist [3H]nitrendipine [( 3H]NTD) were performed in uninephrectomized, deoxycorticosterone (DOCA)-NaCl hypertensive rats and vehicle treated normotensive control littermates. After 6 weeks of treatment, hypertensive (199 mmHg, systolic arterial pressure) DOCA rats showed significantly increased heart, left ventricle, and kidney weight in contrast to normotensive (135 mmHg) controls. [3H]NTD binding in the brainstem was significantly reduced (51 +/- 5 fmol/mg protein) in DOCA-NaCl rats, as compared to controls (116 +/- 24 fmol/mg protein). However, no significant differences were found in the [3H]NTD dissociation constants for DOCA-NaCl (0.43 +/- 0.03 nM) or control rats (0.62 +/- 0.06 nM). Cerebral cortical and left ventricular tissue showed no significant alterations in receptor binding density or affinity. Specific [3H]NTD binding was not significantly altered in other selected brain regions or the atria. These data suggest that alterations in the dihydropyridine binding sites associated with calcium channels in the brainstem may be involved in the etiology of DOCA-NaCl-induced hypertension.  相似文献   

8.
Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [3H]PN200-110, and the alkaloid, [3H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling.  相似文献   

9.
Human skeletal muscle expresses leptin receptor mRNA; however, it remains unknown whether leptin receptors (OB-R) are also expressed at the protein level. Fourteen healthy men (age = 33.1 +/- 2.0 yr, height = 175.9 +/- 1.7 cm, body mass = 81.2 +/- 3.8 kg, body fat = 22.5 +/- 1.9%; means +/- SE) participated in this investigation. The expression of OB-R protein was determined in skeletal muscle, subcutaneous adipose tissue, and hypothalamus using a polyclonal rabbit anti-human leptin receptor. Three bands with a molecular mass close to 170, 128, and 98 kDa were identified by Western blot with the anti-OB-R antibody. All three bands were identified in skeletal muscle: the 98-kDa and 170-kDa bands were detected in hypothalamus, and the 98-kDa and 128-kDa bands were detected in thigh subcutaneous adipose tissue. The 128-kDa isoform was not detected in four subjects, whereas in the rest its occurrence was fully explained by the presence of intermuscular adipose tissue, as demonstrated using an anti-perilipin A antibody. No relationship was observed between the basal concentration of leptin in serum and the 170-kDa band density. In conclusion, a long isoform of the leptin receptor with a molecular mass close to 170 kDa is expressed at the protein level in human skeletal muscle. The amount of 170-kDa protein appears to be independent of the basal concentration of leptin in serum.  相似文献   

10.
11.
Pickar, Joel G., John P. Mattson, Steve Lloyd, and TimothyI. Musch. Decreased[3H]ouabainbinding sites in skeletal muscle of rats with chronic heart failure.J. Appl. Physiol. 83(1): 323-329, 1997.Abnormalities intrinsic to skeletal muscle are thought tocontribute to decrements in exercise capacity found in individualswith chronic heart failure (CHF).Na+-K+-adenosinetriphosphatase(the Na+ pump) is essential formaintaining muscle excitability and contractility. Therefore, weinvestigated the possibility that the number and affinity ofNa+ pumps in locomotor muscles ofrats with CHF are decreased. Myocardial infarction (MI) was induced in8 rats, and a sham operation was performed in 12 rats. The degree ofCHF was assessed ~180 days after surgery. Soleus and plantarismuscles were harvested, and Na+pumps were quantified by using a[3H]ouabain bindingassay. At the time of muscle harvest, MI and sham-operated rats weresimilar in age (458 ± 54 vs. 447 ± 34 days old, respectively).Compared with their sham-operated counterparts, MI rats had asignificant amount of heart failure, right ventricular-to-body weightratio was greater (48%), and the presence of pulmonary congestion wassuggested by an elevated lung-to-body weight ratio (29%). Leftventricular end-diastolic pressure was significantly increased in theMI rats (11 ± 1 mmHg) compared with the sham-operated controls (1 ± 1 mmHg). In addition, mean arterial blood pressure was lower inthe MI rats compared with their control counterparts. [3H]ouabain bindingsites were reduced 18% in soleus muscle (136 ± 12 vs. 175 ± 13 pmol/g wet wt, MI vs. sham, respectively) and 22% in plantaris muscle(119 ± 12 vs. 147 ± 8 pmol/g wet wt, MI vs. sham,respectively). The affinity of these[3H]ouabain bindingsites was similar for the two groups. The relationship between thereduction in Na+ pump number andthe reduced exercise capacity in individuals with CHF remains to bedetermined.

  相似文献   

12.
The effect of clinical concentrations of volatile anesthetics on ryanodine receptors of cardiac and skeletal muscle sarcoplasmic reticulum was evaluated using [3H]ryanodine binding. At 2 volume percent, halothane and enflurane stimulated binding to cardiac SR by 238% and 204%, respectively, while isoflurane had no effect. In contrast, halothane and enflurane had no effect on [3H]ryanodine binding to skeletal ryanodine receptors, while isoflurane produced a significant stimulation. These results suggest that volatile anesthetics interact in a site-specific manner with ryanodine receptors of cardiac or skeletal muscle to effect Ca2+ release-channel gating.  相似文献   

13.
It has been clarified that ryanodine binds to Ca2(+)-induced Ca release channels in the open state in sarcoplasmic reticulum. While the pharmacological action of ryanodine is known to be retarded at a low temperature, the Ca-releasing action of caffeine is potentiated at a low temperature. In order to obtain deeper insight into the molecular mechanism underlying Ca-release, the effect of temperature on ryanodine binding to the heavy fraction of sarcoplasmic reticulum (HFSR) from bullfrog skeletal muscle was examined. Although Ca2+ is indispensable for ryanodine binding, Ca2+ alone cannot cause ryanodine binding in a reaction medium of a salt concentration similar to that of the sarcoplasm. In addition to Ca2+, caffeine and/or beta,gamma-methylene adenosine triphosphate (AMPOPCP) are necessary. [3H]Ryanodine binding at 25 degrees C closely paralleled the Ca release activity in respect of the Ca2(+)-dependence in the presence of caffeine and/or AMPOPCP, and the effects of inhibitors. A Scatchard plot for ryanodine binding gave a straight linear line, indicating a single class of homogeneous binding sites. At 0 degrees C, the rate of ryanodine binding decreased. Q10 being about 3 on average. The affinity for ryanodine was reduced to about half that at 25 degrees C, with no change in the maximum number of binding sites. The temperature-dependent change in apparent affinity for Ca2+ on ryanodine binding is not always consistent with that in the case of Ca-release activity. The bound ryanodine may be in an occluded state because it did not dissociate for up to 90 h at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls showed similar distribution of receptors. The current study demonstrates that purinergic receptors are located intracellularly in human skeletal muscle fibres. The similar cellular localization of receptors in healthy and diabetic subjects suggests that diabetes is not associated with an altered distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.  相似文献   

16.
The promethazine-sensitive [3H]mepyramine binding was used to determine the presence of histamine H1 receptors in membranes from bovine retina. Specific mepyramine binding to retinal membranes was reversible, saturable and of high affinity. The apparent dissociation constant (KD = 2.2 +/- 0.4 nM) and the density of binding sites (Bmax = 60.9 +/- 5.1 fmol/mg protein), obtained in equilibrium studies, were similar to those found in bovine brain cortex. Binding was stereospecific and the inhibitory potencies of H1 and H2 antagonists indicated that [3H] mepyramine binding sites in the retina have characteristics of H1 receptors.  相似文献   

17.
Autonomic innervation of receptors and muscle fibres in cat skeletal muscle   总被引:3,自引:0,他引:3  
Cat hindlimb muscles, deprived of their somatic innervation, have been examined with fluorescence and electron microscopy and in teased, silver preparations; normal diaphragm muscles have been examined with electron microscopy only. An autonomic innervation was found to be supplied to both intra- and extrafusal muscle fibres. It is not present in all muscle spindles and is not supplied at all to tendon organs. Fluorescence microscopy revealed a noradrenergic innervation distributed to extrafusal muscle fibres and some spindles. On the basis of the vesicle content of varicosities the extrafusal innervation was identified as noradrenergic (32 axons traced), and the spindle innervation as involving noradrenergic, cholinergic and non-adrenergic axons (14 traced). Some of the noradrenergic axons that innervate spindles and extrafusal muscle fibres are branches of axons that also innervate blood vessels. We cannot say whether there are any noradrenergic axons that are exclusively distributed to intra- or extrafusal muscle fibres. The varicosities themselves may be in neuroeffective association with striated muscle fibres only, or with both striated fibres and the smooth muscle cells in the walls of blood vessels. The functional implications of this direct autonomic innervation of muscle spindles and skeletal muscle fibres are discussed and past work on the subject is evaluated.  相似文献   

18.
Summary and Conclusions Work over the past ten years has greatly increased our understanding of both the structure and function of the muscle nicotinic acetylcholine receptor. There is a strongly supported general picture of how the receptor functions: agonist binds rapidly to sites of low affinity and channel opening occurs at a rate comparable to the agonist dissociation rate. Channel closing is slow, so the channel has a high probability of being open if both agonist-binding sites are occupied by ACh. Results of expression studies have shown that each subunit can influence AChR activation and have given a structural basis for the major physiological change known for muscle AChR, the developmental change in AChR activation. These general statements notwithstanding, there are still major areas of uncertainty which limit our understanding. We have emphasized these areas of uncertainty in this review, to indicate what needs to be done.First, the quantitative estimates of rate constants are not as strongly supported as they should be. The major reasons are twofold—uncertainties about the interpretation of components in the kinetic data and difficulties of resolving brief events. As a result, any inferences about the functional consequences of structural alterations must remain tenuous.Second, the functional behavior of individual AChRs is not as well understood as it should be. The kinetic behavior of an individual receptor clearly can be complex (section II). In addition, there is evidence that superimposed on this complexity there may be stable and kinetically distinguishable populations of receptors (section III). Until the basis for the kinetically defined populations is clarified, kinetic parameters for receptors of defined structure cannot be unambiguously obtained.Finally, it is not surprising that the studies of AChR of altered structure have not given definitive results. Two reasons should be apparent from the preceding points: there is not a fully supported approach for kinetic analysis, and the normal population may not be clearly defined. An additional complication is also emerging, in that the available data support the idea that specific residues distributed over all subunits may influence AChR activation. This possibility renders the task of analysis that much more difficult.The muscle nicotinic AChR has served as a prototype for the family of transmitter-gated membrane channels, which includes the muscle and neuronal nicotinic receptors, the GABAA, the glycine and possibly the non-NMDA excitatory amino acid receptor (Stroud et al., 1990). It is interesting to note that the functional properties of the GABAA receptor, probably the best-studied of the other members of the family are rather similar. In particular, opentime and burst durations show multiple components interpreted as reflecting openings of singly and doubly liganded receptors (Mathers & Wang, 1988; Macdonald et al., 1989), the distribution of gaps indicates a relatively complex gating scheme (Twyman et al., 1990; Weiss & Magleby, 1989), and multiple kinetic modes are likely to exist (Newland et al., 1991). The situation with regards to the effects of GABAA receptor subunit stoichiometry is more complex than for muscle AChR (e.g., Luddens & Wisden, 1991), perhaps similar to that found for neuronal nicotinic AChR (Papke et al., 1989; Luetje et al., 1990; Luetje & Patrick, 1991). Overall, it appears that the unresolved questions about the muscle nicotinic AChR are not indications that this is an exceptionally complicated transmitter-gated channel. Rather, it appears to be a relatively straightforward member of the family, and the lessons we learn from studying it are likely to be directly applicable to other receptors.We thank many friends for discussion, including Tony Auerbach, Paul Brehm, Jim Dilger, Meyer Jackson, and Chuck Stevens who told us about data before publication. Research in the authors' laboratories is supported by grants from the NIH (CL and JHS) and the AHA (CL).  相似文献   

19.
Modulation of ion channels is an essential step for understanding the regulation of cellular functions. 1,4-Dihydropyridines (nitrendipine, nifedipine, PN 200-110, etc.) are potent inhibitors of voltage-dependent calcium channels and are important therapeutic agents in the treatment of various cardiovascular disorders such as angina and cardiac arrhythmias. In this work a new procedure is employed to determine the density of surface dihydropyridine receptors in contracting muscle cells in culture. Activation of endogenous protein kinase C (the Ca2+/phospholipid-dependent enzyme) by the tumor promoter phorbol-12-myristate or 1-oleoyl-2-acetylglycerol enhanced the number of dihydropyridine receptors without significant change in the receptor affinity. The increase in the number of receptors was associated with stimulation of the dihydropyridine-sensitive 45Ca uptake as well as activation of protein kinase C in myotubes treated with phorbol esters. These data strongly suggest that activation of protein kinase C promotes the appearance of dihydropyridine receptors in the plasma membrane.  相似文献   

20.
The effects of bacitracin were investigated on [3H]nitrendipine binding to rat brain and cardiac membranes in a low ionic strength (5 mM Tris-HCl) buffer. Bacitracin inhibited [3H]nitrendipine binding to rat brain and cardiac membranes with IC50 values of 400 +/- 100 and 4600 +/- 400 micrograms/mL, respectively. Scatchard analysis in brain membranes revealed that bacitracin inhibited [3H]nitrendipine binding primarily by reducing the Bmax but also by producing a small increase in the Kd. In brain membranes, Na+ (100 mM) and Ca2+ (2 mM) reduced the potency of bacitracin to inhibit [3H]nitrendipine binding by approximately sixfold with IC50 values of 2600 +/- 300 and 2100 +/- 400 micrograms/mL observed for bacitracin in the presence of 100 mM Na+ and 2 mM Ca2+, respectively. The EC50 values for the effects of Na+ and Ca2+ were 800 +/- 200 microM and 25 +/- 5 mM. K+, Mg2+, choline, and increasing the assay buffer of Tris-HCl to 50 mM also decreased the inhibition of [3H]nitrendipine binding by bacitracin. These results suggest that bacitracin specifically modulates [3H]nitrendipine binding in a cation-dependent manner and that brain and cardiac dihydropyridine binding sites are either biochemically different or exist in a different membrane environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号