首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Water deficit is one of the main abiotic factors that affect spring wheat planted in subtropical regions. Accumulation of proline appears to be a promising approach to maintain the productivity of plants under stress condition. However, morphological alterations and growth reduction are observed in transgenic plants carrying genes coding for osmoprotectants controlled by constitutive promoters. We report here the effects of water deficit on wheat plants transformed with the Vigna aconitifolia Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA that encodes the key regulatory enzyme in proline biosynthesis, under the control of a stress-induced promoter complex-AIPC. Transgenic wheat plants submitted to 15 days of water shortage presented a distinct response. We have found that drought resulted in the accumulation of proline. The tolerance to water deficit observed in transgenic plants was mainly due to protection mechanisms against oxidative stress and not caused by osmotic adjustment.  相似文献   

3.
4.
Low-dose acetylsalicylic acid (ASA) treatment is a standard therapeutic approach in diabetes mellitus for prevention of long-term vascular complications. The aim of the present work was to investigate the effect of long-term ASA administration in experimental diabetes on activities of some liver enzymes: glutathione peroxidase (GSHPx), catalase, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione S-transferase (GST). Blood glucose, glycated hemoglobin, as well as plasma ALT and AST activities increased in rats with streptozotocin-induced experimental diabetes. The long-term hyperglycemia resulted in decreased activities of GSHPx (by 26%), catalase (by 34%), GST (by 38%) and G6PDH (by 27%) in diabetic animals. We did not observe increased accumulation of membrane lipid peroxidation products or altered levels of reduced glutathione in livers. The linear correlation between blood glucose and glycated hemoglobin in diabetic animals was distorted upon ASA treatment, which was likely due to a chemical competition between nonenzymatic protein glycosylation and protein acetylation. The long-term ASA administration partially reversed the decrease in GSHPx activity, but did not influence the activities of catalase and GST in diabetic rats. Otherwise, some decrease in these parameters was noted in ASA-treated nondiabetic animals. Increased ASA-induced G6PDH activity was recorded in both diabetic and nondiabetic rats. While both glycation due to diabetic hyperglycemia and ASA-mediated acetylation had very similar effects on the activities of all studied enzymes but G6PDH, we conclude that non-enzymatic modification by either glucose or ASA may be a common mechanism of the observed convergence.  相似文献   

5.
6.
Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions of the Arabidopsis genes were highly homologous to each other and to the coding region of the tobacco gene but distinct from the GST genes that have been isolated from arabidopsis thusfar. Overexpression of a cDNA clone in Escherichia coli revealed that the AT103-1A protein had GST activity.  相似文献   

7.
8.
Summary. Elevated levels of glutathione S-transferases (GSTs) are among the factors associated with an increased resistance of tumors to a variety of antineoplastic drugs. Hence a major advancement to overcome GST-mediated detoxification of antineoplastic drugs is the development of GST inhibitors. Two such agents have been synthesized and tested on the human Alpha, Mu and Pi GST classes, which are the most representative targets for inhibitor design. The novel fluorescent glutathione S-conjugate L-γ-glutamyl-(S-9-fluorenylmethyl)-L-cysteinyl-glycine (4) has been found to be a highly potent inhibitor of human GSTA1-1 in vitro (IC50=0.11±0.01 μM). The peptide is also able to inhibit GSTP1-1 and GSTM2-2 isoenzymes efficiently. The backbone-modified analog L-γ-(γ-oxa)glutamyl-(S-9-fluorenylmethyl)-L-cysteinyl-glycine (6), containing an urethanic junction as isosteric replacement of the γ-glutamyl-cysteine peptide bond, has been developed as γ-glutamyl transpeptidase-resistant mimic of 4 and evaluated in the same inhibition tests. The pseudopeptide 6 was shown to inhibit the GSTA1-1 protein, albeit to a lesser extent than the lead compound, with no effect on the activity of the isoenzymes belonging to the Mu and Pi classes. The comparative loss in biological activity consequent to the isosteric change confirms that the γ-glutamyl moiety plays an important role in modulating the affinity of the ligands addressed to interact with GSH-dependent proteins. The new specific inhibitors may have a potential in counteracting tumor-protective effects depending upon GSTA1-1 activity.  相似文献   

9.
Glutathione S-transferases (GSTs) of Oesophagostomum dentatum possess considerable similarity to synthetic prostaglandin D synthase (PGDS), and therefore their ability to convert prostaglandin (PG) H2 to PGD2in vitro was investigated with a commercial Prostaglandin D Synthase Inhibitor Screening Assay Kit. Fractioned homogenates of O. dentatum third-stage larvae only displayed cytosolic but not microsomal GST. Both total larval homogenate and isolated GST could metabolise PGH2 to PGD2, which could be inhibited by the GST inhibitor sulfobromophthalein (SBP) in a dose-dependent manner, whereas reactions to the specific PGDS inhibitor HQL-79 were not dose-dependent. Inhibition of larval development by SBP in vitro was abolished by the addition of PGD2 but not by PGH2, supporting the assumption that GST acts as PGDS and is important for nematode development. Since motility and viability of O. dentatum larvae are reduced in vitro by various inhibitors of eicosanoid metabolism, enzymes of this pathway, including GST, constitute putative intervention targets.  相似文献   

10.
A novel GST isoenzyme was purified from hepatopancreas cytosol of Atactodea striata with a combination of affinity chromatography and reverse-phase HPLC. The molecular weight of the enzyme was determined to be 24 kDa by SDS-PAGE electrophoresis and 48 kDa by gel chromatography, in combination with GST information from literature revealed that the native enzyme was homodimeric with a subunit of M(r) 24 kDa. The purified enzyme, exhibited high activity towards 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a K(m) of 0.43 mM and V(max) of 0.24 micromol/min/mg and a specific activity of 108.9 micromol/min/mg. The isoelectric point of the enzyme was 5.5 by isoelectric focusing and its optimum temperature was 38 degrees C and the enzyme had a maximum activity at approximately pH 8.0. The amino acid composition was also determined for the purified enzyme.  相似文献   

11.
We investigated selective culturing conditions for the production of transgenic soybeans. In this culturing system, we used the acetolactate synthase (ALS)-inhibiting herbicide-resistance gene derived from rice (Os-mALS gene) as a selectable marker gene instead of that derived from bacteria, which interfered with the cultivation and practical usage of transgenic crops. T1 soybeans grown from one regenerated plant after selection of the ALS-targeting pyrimidinyl carboxy (PC) herbicide bispyribac-sodium (BS) exhibited herbicide resistance, and the introduction and expression of the Os-mALS gene were confirmed by genetic analysis. The selective culturing system promoted by BS herbicide, in which the Os-mALS gene was used as a selectable marker, was proved to be applicable to the production of transgenic soybeans, despite the appearance of escaped soybean plants that did not contain the Os-mALS transgene.  相似文献   

12.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

13.
Luo K  Zheng X  Chen Y  Xiao Y  Zhao D  McAvoy R  Pei Y  Li Y 《Plant cell reports》2006,25(5):403-409
We have assessed the use of a homeobox gene knotted1 (kn1) from maize as a selectable marker gene for plant transformation. The kn1 gene under the control of cauliflower mosaic virus 35S promoter (35S::kn1) was introduced into Nicotiana tabacum cv. Xanthi via Agrobacterium-mediated transformation. Under nonselective conditions (without antibiotic selection) on a hormone-free medium (MS), a large number of transgenic calli and shoots were obtained from explants that were infected with Agrobacterium tumefaciens LBA4404 harboring the 35S::kn1 gene. On the other hand, no calli or shoots were produced from explants that were infected with an Agrobacterium strain harboring pBI121 (nptII selection) or from uninfected controls cultured under identical conditions. Relative to kanamycin selection conferred by nptII, the use of kn1 resulted in a 3-fold increase in transformation efficiency. The transgenic status of shoots obtained was confirmed by both histochemical detection of GUS activity and molecular analysis. The results presented here suggest that kn1 gene could be used as an effective alternative selection marker with a potential to enhance plant transformation efficiency in many plant species. With kn1 gene as a selection marker gene, no antibiotic-resistance or herbicide-resistance genes are needed so that potential risks associated with the use of these traditional selection marker genes can be eliminated.  相似文献   

14.
Embryogenic tissue cultures of soybean were transformed by particle bombardment with a vector pCHZ-II that carries the coding sequence for cyanamide hydratase (Cah), an enzyme that converts toxic cyanamide to urea, from the soil fungus Myrothecium verrucaria. The Cah gene was driven by the constitutive Arabidopsis thaliana actin-2 promoter and terminated with its cognate terminator. This vector also carries the hygromycin phosphotransferase gene (hpt) driven by the potato (Solanum tuberosum) ubiquitin-3 promoter. Twelve individual lines of transgenic plants that were obtained under hygromycin selection expressed Cah mRNA and exhibited resistance to hygromycin in leaf tissue culture, while the untransformed tissues were sensitive. Cah enzyme activity was present in extracts of transformed leaves and embryogenic tissue cultures when measured by a colorimetric assay and the presence of the Cah protein was confirmed by enzyme-linked immunosorbent assay (ELISA). Cah expression detoxified cyanamide in leaf callus and embryogenic cultures as well as in whole plants as shown by cyanamide resistance. The Cah-expressing plants grew and set seeds normally indicating that the Cah enzyme activity did not affect soybean plant metabolism. We also describe a test whereby callus was formed on cultured leaf tissue in the presence of hygromycin or cyanamide only if the hpt or Cah gene was expressed, respectively. This test is a convenient and cost-effective way to follow the marker gene in the primary regenerated plants and subsequent generations, which is particularly reliable for the hpt gene expression using hygromycin.  相似文献   

15.
The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.  相似文献   

16.
There are large inter-individual differences in the metabolism of vitamin C (VC), which is composed of both ascorbic acid (AsA) and dehydroascorbic acid (DAsA). AsA is oxidized to DAsA in a series of xenobiotic reactions. Thus, the effects of polymorphism A313G (Ile105Val) in the gene for glutathione S-transferases P1 (GSTP1), one of the most active xenobiotic enzymes, on human VC metabolism were studied. The variant frequency of GSTP1 among the present subjects (n = 210) was AA 71.0%; GA 27.0% and GG 1.9%. At 24 h after administration of 1 mmol of VC to young women (n = 17; age, 21.0 ± 1.1 y), total VC excretion (46.7 ± 18.1 mg) by AA homozygotes of GSTP1 was greater (p < 0.0069) than that (28.2 ± 14.0 mg) by GA heterozygotes. One hour after administration of VC, blood total VC levels were also significantly different (p < 0.0036) between the homozygotes and heterozygotes. The effects of other polymorphisms in xenobiotic enzymes on VC metabolism were small.  相似文献   

17.
The molecular mechanism of signal transduction pathways which mediate the action of phytohormones are poorly understood. Recently, we and others have shown that the as-1 type cis-acting elements can respond to auxin and salicylic acid, two well-characterized signaling molecules in plants. In the present work, we have examined a comprehensive set of physiological and abiotic agents and found that auxin, salicylic acid and methyl-jasmonate are three effective inducers of the as-1-type elements in transgenic tobacco. Using a cell suspension culture containing a synthetic promoter-GUS fusion, we demonstrated rapid and sensitive induction of the as-1-type element by these phytohormones. Furthermore, a tobacco glutathione S-transferase gene, GNT35, that contains an as-1-type binding site in its promoter is also inducible by auxin, salicylic acid and methyl-jasmonate with similar kinetics. As Ulmasov et al. have recently reported, we found that the as-1-type elements can also respond to weak/inactive analogues of auxin and salicylic acid. In addition, we show that hydrogen peroxide can also effectively activate the expression of GNT35 as well as the as-1-type element in a cell suspension culture, but not with whole seedlings. These results are discussed with respect to the possible mechanism(s) through which a single cis element may respond to a diverse array of molecules.  相似文献   

18.
The maleylpyruvate isomerase NagL from Ralstonia sp. strain U2, which has been structurally characterized previously, catalyzes the isomerization of maleylpyruvate to fumarylpyruvate. It belongs to the class zeta glutathione S-transferases (GSTZs), part of the cytosolic GST family (cGSTs). In this study, site-directed mutagenesis was conducted to probe the functions of 13 putative active site residues. Steady-state kinetic information for mutants in the reduced glutathione (GSH) binding site, suggested that (a) Gln64 and Asp102 interact directly with the glutamyl moiety of glutathione, (b) Gln49 and Gln64 are involved in a potential electron-sharing network that influences the ionization of the GSH thiol. The information also suggests that (c) His38, Asn108 and Arg109 interact with the GSH glycine moiety, (d) His104 has a role in the ionization of the GSH sulfur and the stabilization of the maleyl terminal carboxyl group in the reaction intermediate and (e) Arg110 influences the electron distribution in the active site and therefore the ionization of the GSH thiolate. Kinetic data for mutants altered in the substrate-binding site imply that (a) Arg8 and Arg176 are critical for maleylpyruvate orientation and enolization, and (b) Arg109 (exclusive to NagL) participates in kcat regulation. Surprisingly, the T11A mutant had a decreased GSH Km value, whereas little impact on maleylpyruvate kinetics was observed, suggesting that this residue plays an important role in GSH binding. An evolutionary trend in this residue appears to have developed not only in prokaryotic and eukaryotic GSTZs, but also among the wider class of cGSTs.  相似文献   

19.
20.
The acclimation of reduced glutathione (GSH) biosynthesis and GSH-utilizing enzymes to salt stress was studied in two tomato species that differ in stress tolerance. Salt increased GSH content and GSH:GSSG (oxidized glutathione) ratio in oxidative stress-tolerant Lycopersicon pennellii (Lpa) but not in Lycopersicon esculentum (Lem). These changes were associated with salt-induced upregulation of gamma-glutamylcysteine synthetase protein, an effect which was prevented by preincubation with buthionine sulfoximine. Salt treatment induced glutathione peroxidase and glutathione-S-transferase but not glutathione reductase activities in Lpa. These results suggest a mechanism of coordinate upregulation of synthesis and metabolism of GSH in Lpa, that is absent from Lem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号