首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular pathogen Legionella pneumophila is able to strike a balance between the death and survival of the host cell during infection. Despite the presence of high level of active caspase 3, the executioner caspase of apoptotic cell death, infected permissive macrophages are markedly resistant to exogenous apoptotic stimuli. Several bacterial molecules capable of promoting the cell survival pathways have been identified, but proteins involved in the activation of caspase 3 remain unknown. To study the mechanism of L. pneumophila‐mediated caspase 3 activation, we tested all known Dot/Icm substrates for their ability to activate caspase 3. Five effectors capable of causing caspase 3 activation upon transient expression were identified. Among these, by using its ability to activate caspase 3 by inducing the release of cytochrome c from the mitochondria, we demonstrated that VipD is a phospholipase A2, which hydrolyses phosphatidylethanolamine (PE) and phosphocholine (PC) on the mitochondrial membrane in a manner that appears to require host cofactor(s). The lipase activity leads to the production of free fatty acids and 2‐lysophospholipids, which destabilize the mitochondrial membrane and may contribute to the release of cytochrome c and the subsequent caspase 3 activation. Furthermore, we found that whereas it is not detectably defectively in caspase 3 activation in permissive cells, amutant lacking all of these five genes is less potent in inducing apoptosis in dendritic cells. Our results reveal that activation of host cell death pathways by L. pneumophila is a result of the effects of multiple bacterial proteins with diverse biochemical functions.  相似文献   

2.
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.  相似文献   

3.
Recent studies have suggested a possible role for presenilin proteins in apoptotic cell death observed in Alzheimer's disease. The mechanism by which presenilin proteins regulate apoptotic cell death is not well understood. Using the yeast two-hybrid system, we previously isolated a novel protein, presenilin-associated protein (PSAP) that specifically interacts with the C terminus of presenilin 1 (PS1), but not presenilin 2 (PS2). Here we report that PSAP is a mitochondrial resident protein sharing homology with mitochondrial carrier protein. PSAP was detected in a mitochondria-enriched fraction, and PSAP immunofluorescence was present in a punctate pattern that colocalized with a mitochondrial marker. More interestingly, overexpression of PSAP caused apoptotic death. PSAP-induced apoptosis was documented using multiple independent approaches, including membrane blebbing, chromosome condensation and fragmentation, DNA laddering, cleavage of the death substrate poly(ADP-ribose) polymerase, and flow cytometry. PSAP-induced cell death was accompanied by cytochrome c release from mitochondria and caspase-3 activation. Moreover, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, which blocked cell death, did not block the release of cytochrome c from mitochondria caused by overexpression of PSAP, indicating that PSAP-induced cytochrome c release was independent of caspase activity. The mitochondrial localization and proapoptotic activity of PSAP suggest that it is an important regulator of apoptosis.  相似文献   

4.
5.

Background  

Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid), which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM).  相似文献   

6.
Zhao L  He F  Liu H  Zhu Y  Tian W  Gao P  He H  Yue W  Lei X  Ni B  Wang X  Jin H  Hao X  Lin J  Chen Q 《The Journal of biological chemistry》2012,287(2):1054-1065
Overwhelming evidence indicates that Bax and Bak are indispensable for mediating cytochrome c release from mitochondria during apoptosis. Here we report a Bax/Bak-independent mechanism of cytochrome c release and apoptosis. We identified a natural diterpenoid compound that induced apoptosis in bax/bak double knock-out murine embryonic fibroblasts and substantially reduced the tumor growth from these cells implanted in mice. Treatment with the compound significantly increased expression of Bim, which migrated to mitochondria, altering the conformation of and forming oligomers with resident Bcl-2 to induce cytochrome c release and caspase activation. Importantly, purified Bim and Bcl-2 proteins cooperated to permeabilize a model mitochondrial outer membrane; this was accompanied by oligomerization of these proteins and deep embedding of Bcl-2 in the membrane. Therefore, the diterpenoid compound induces a structural and functional conversion of Bcl-2 through Bim to permeabilize the mitochondrial outer membrane, thereby inducing apoptosis independently of Bax and Bak. Because Bcl-2 family proteins play important roles in cancer development and relapse, this novel cell death mechanism can be explored for developing more effective anticancer therapeutics.  相似文献   

7.
We explored the role of low mitochondrial membrane potential (DeltaPsim) and the lack of oxidative phosphorylation in apoptosis by assessing the susceptibility of osteosarcoma cell lines with and without mitochondrial DNA to staurosporine-induced death. Our cells without mitochondrial DNA had low DeltaPsim and no functional oxidative phosphorylation. Contrary to our expectation, these cells were more resistant to staurosporine-induced death than were the parental cells. This reduced susceptibility was associated with decreased activation of caspase 3 but not with the mitochondrial permeability transition pore or cytochrome c release from the mitochondria. Apoptosis in both cell lines was associated with an increase in DeltaPsim. Bcl-x(L) could protect both cell types against caspase 3 activation and apoptosis by a mechanism that does not appear to be mediated by mitochondrial function or modulation of DeltaPsim. Nevertheless, we found that Bcl-x(L) expression can stimulate cell respiration in cells with mitochondrial DNA. Our results showed that the lack of functional oxidative phosphorylation and/or low mitochondrial membrane potential are associated with an antiapoptotic effect, possibly contributing to the development of some types of cancer. It also reinforces a model in which Bcl-x(L) can exert an antiapoptotic effect by stimulating oxidative phosphorylation and/or inhibiting caspase activation.  相似文献   

8.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

9.
Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.  相似文献   

10.
Many cell death pathways converge at the mitochondria to induce release of apoptogenic proteins and permeability transition, resulting in the activation of effector caspases responsible for the biochemical and morphological alterations of apoptosis. The death receptor pathway has been described as a triphasic process initiated by the activation of apical caspases, a mitochondrial phase, and then the final phase of effector caspase activation. Granzyme B (GrB) activates apical and effector caspases as well as promotes cytochrome c (cyt c) release and loss of mitochondrial membrane potential. We investigated how GrB affects mitochondria utilizing an in vitro cell-free system and determined that cyt c release and permeability transition are initiated by distinct mechanisms. The cleavage of cytosolic BID by GrB results in truncated BID, initiating mitochondrial cyt c release. BID is the sole cytosolic protein responsible for this phenomenon in vitro, yet caspases were found to participate in cyt c release in some cells. On the other hand, GrB acts directly on mitochondria in the absence of cytosolic S100 proteins to open the permeability transition pore and to disrupt the proton electrochemical gradient. We suggest that GrB acts by two distinct mechanisms on mitochondria that ultimately lead to mitochondrial dysfunction and cellular demise.  相似文献   

11.
HL-60 cell differentiation into neutrophil like cells is associated with their induction of apoptosis. We investigated the cellular events that occur pre and post mitochondrial permeability transition to determine the role of the mitochondria in the induction of differentiation induced apoptosis. Pro-apoptotic Bax was translocated to and cleaved at the mitochondrial membrane in addition to t-Bid activation. These processes contributed to mitochondrial membrane disruption and the release of cytochrome c and Smac/DIABLO. The release of cytochrome c was caspase independent, as the caspase inhibitor Z-VAD.fmk, which inhibited apoptosis, did not block the release of cytochrome c. In contrast, the release of Smac/DIABLO was partially inhibited by caspase inhibition indicating differential release pathways for these mitochondrial pro-apoptotic factors. In addition to caspase inhibition we assessed the effects of the Bcl-2 anti-apoptotic family on differentiation induced apoptosis. BH4-Bcl-xl-TAT recombinant protein did not delay apoptosis, but did block the release of cytochrome c and Smac/DIABLO. Bcl-2 over-expression also inhibited differentiation induced apoptosis but was associated with the inhibition of the differentiation process. Differentiation mediated mitochondrial release of cytochrome c and Smac/DIABLO, may not trigger the induction of apoptosis, as BH4-Bclxl-TAT blocks the release of pro-apoptotic factors from the mitochondria, but does not prevent apoptosis.  相似文献   

12.
A unique feature of human alveolar macrophages is their prolonged survival in the face of a stressful environment. We have shown previously that the ERK MAPK is constitutively active in these cells and is important in prolonging cell survival. This study examines the role of the ERK pathway in maintaining mitochondrial energy production. The data demonstrate that ATP levels in alveolar macrophages depend on intact mitochondria and optimal functioning of the electron transport chain. Significant levels of MEK and ERK localize to the mitochondria and inhibition of ERK activity induces an early and profound depletion in cellular ATP coincident with a loss of mitochondrial transmembrane potential. The effect of ERK suppression on ATP levels was specific, since it did not occur with PI3K/Akt, p38, or JNK suppression. ERK inhibition led to cytosolic release of mitochondrial proteins and caspase activation. Both ERK inhibition and mitochondrial blockers induced loss of plasma membrane permeability and cell death. The cell death induced by ERK inhibition had hallmarks of both apoptotic (caspase activation) and necrotic (ATP loss) cell death. By blocking ERK inhibition-induced reactive oxygen species, caspase activation was prevented, although necrotic pathways continued to induce cell death. This suggests that mitochondrial dysfunction caused by ERK inhibition generates both apoptotic and necrotic cell death-inducing pathways. As a composite, these data demonstrate a novel mitochondrial role for ERK in maintaining mitochondrial membrane potential and ATP production in human alveolar macrophages.  相似文献   

13.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

14.
Effective execution of apoptosis requires the activation of caspases. However, in many cases, broad-range caspase inhibitors such as Z-VAD.fmk do not inhibit cell death because death signaling continues via basal caspase activities or caspase-independent processes. Although death mediators acting under caspase-inhibiting conditions have been identified, it remains unknown whether they trigger a physiologically relevant cell death that shows typical signs of apoptosis, including phosphatidylserine (PS) exposure and the removal of apoptotic cells by phagocytosis. Here we show that cells treated with ER stress drugs or deprived of IL-3 still show hallmarks of apoptosis such as cell shrinkage, membrane blebbing, mitochondrial release of cytochrome c, PS exposure and phagocytosis in the presence of Z-VAD.fmk. Cotreatment of the stressed cells with Z-VAD.fmk and the serine protease inhibitor Pefabloc (AEBSF) inhibited all these events, indicating that serine proteases mediated the apoptosis-like cell death and phagocytosis under these conditions. The serine proteases were found to act upstream of an increase in mitochondrial membrane permeability as opposed to the serine protease Omi/HtrA2 which is released from mitochondria at a later stage. Thus, despite caspase inhibition or basal caspase activities, cells can still be phagocytosed and killed in an apoptosis-like fashion by a serine protease-mediated mechanism that damages the mitochondrial membrane.  相似文献   

15.
Zhang Y  Wang H  Wang J  Han H  Nattel S  Wang Z 《FEBS letters》2003,540(1-3):125-132
In this study, we show that ultraviolet B radiation (UVB)-induced apoptosis of human keratinocytes involves mainly cytosolic signals with mitochondria playing a central role. Overexpression of Bcl-2 inhibited UVB-induced apoptosis by blocking the early generation of reactive oxygen species, mitochondrial cardiolipin degradation and cytochrome c release, without affecting Fas ligand (FasL)-induced cell death. It also prevented the subsequent activation of procaspase-3 and -8 as well as Bid cleavage in UVB-treated cells. Comparative analysis of UVB and FasL death pathways revealed a differential role and mechanism of caspase activation, with the UVB-induced activation of procaspase-8 only being a bystander cytosolic event rather than a major initiator mechanism, as is the case for the FasL-induced cell death. Our results suggest that Bcl-2 overexpression, by preventing reactive oxygen species production, helps indirectly to maintain the integrity of lysosomal membranes, and therefore inhibits the release of cathepsins, which contribute to the cytosolic activation of procaspase-8 in UVB-irradiated keratinocytes.  相似文献   

16.
The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeabilization, release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis.  相似文献   

17.
Many apoptotic signaling pathways are directed to mitochondria, where they initiate the release of apoptogenic proteins and open the proposed mitochondrial permeability transition (PT) pore that ultimately results in the activation of the caspase proteases responsible for cell disassembly. BNIP3 (formerly NIP3) is a member of the Bcl-2 family that is expressed in mitochondria and induces apoptosis without a functional BH3 domain. We report that endogenous BNIP3 is loosely associated with mitochondrial membrane in normal tissue but fully integrates into the mitochondrial outer membrane with the N terminus in the cytoplasm and the C terminus in the membrane during induction of cell death. Surprisingly, BNIP3-mediated cell death is independent of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of apoptosis-inducing factor. However, cells transfected with BNIP3 exhibit early plasma membrane permeability, mitochondrial damage, extensive cytoplasmic vacuolation, and mitochondrial autophagy, yielding a morphotype that is typical of necrosis. These changes were accompanied by rapid and profound mitochondrial dysfunction characterized by opening of the mitochondrial PT pore, proton electrochemical gradient (Deltapsim) suppression, and increased reactive oxygen species production. The PT pore inhibitors cyclosporin A and bongkrekic acid blocked mitochondrial dysregulation and cell death. We propose that BNIP3 is a gene that mediates a necrosis-like cell death through PT pore opening and mitochondrial dysfunction.  相似文献   

18.
Waterhouse NJ  Ricci JE  Green DR 《Biochimie》2002,84(2-3):113-121
Identification of pro-apoptotic activities for a variety of proteins normally resident in the mitochondrial inter-membrane space has substantiated the role of mitochondria as integral to the apoptotic process. Cytochrome c is involved in apoptosome formation and caspase activation, SMAC/Diablo deregulates the inhibitor of apoptosis proteins, apoptosis-inducing factor may play a role in chromatin condensation and release of other proteins such as adenylate kinase may adversely affect cellular metabolism and contribute to the death of a cell if the downstream apoptotic pathway is blocked. It is still unclear how these proteins are released from the mitochondria. Recent advances in our knowledge of mitochondrial outer-membrane permeabilization and the consequences of this event on mitochondria will be discussed.  相似文献   

19.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

20.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号