首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mannose-binding protein (MBP; mannose-binding lectin) forms part of the innate immune system. By binding directly to carbohydrates on the surfaces of potential microbial pathogens, MBP and MBP-associated serine proteases (MASPs) can replace antibodies and complement components C1q, C1r, and C1s of the classical complement pathway. In order to investigate the mechanisms of MASP activation by MBP, the cDNAs of rat MASP-1 and -2 have been isolated, and portions encompassing the N-terminal CUB and epidermal growth factor-like domains have been expressed and purified. Biophysical characterization of the purified proteins indicates that each truncated MASP is a Ca(2+)-independent homodimer in solution, in which the interacting modules include the N-terminal two domains. Binding studies reveal that both MASPs associate independently with rat MBP in a Ca(2+)-dependent manner through interactions involving the N-terminal three domains. The biophysical properties of the truncated MASPs indicate that the interactions with MBP leading to complement activation differ significantly from those between components C1q, C1r, and C1s of the classical pathway. Analysis of MASP binding by rat MBP containing naturally occurring mutations equivalent to those associated with human immunodeficiency indicates that binding to both truncated MASP-1 and MASP-2 proteins is defective in such mutants.  相似文献   

2.
Serum mannose-binding proteins (MBPs) are C-type lectins that recognize cell surface carbohydrate structures on pathogens, and trigger killing of these targets by activating the complement pathway. MBPs circulate as a complex with MBP-associated serine proteases (MASPs), which become activated upon engagement of a target cell surface. The minimal functional unit for complement activation is a MASP homodimer bound to two MBP trimeric subunits. MASPs have a modular structure consisting of an N-terminal CUB domain, a Ca(2+)-binding EGF-like domain, a second CUB domain, two complement control protein modules and a C-terminal serine protease domain. The CUB1-EGF-CUB2 region mediates homodimerization and binding to MBP. The crystal structure of the MASP-2 CUB1-EGF-CUB2 dimer reveals an elongated structure with a prominent concave surface that is proposed to be the MBP-binding site. A model of the full six-domain structure and its interaction with MBPs suggests mechanisms by which binding to a target cell transmits conformational changes from MBP to MASP that allow activation of its protease activity.  相似文献   

3.
Serum mannose-binding protein (MBP) neutralizes invading microorganisms by binding to cell surface carbohydrates and activating MBP-associated serine proteases-1, -2, and -3 (MASPs). MASP-2 subsequently cleaves complement components C2 and C4 to activate the complement cascade. To analyze the mechanisms of activation and substrate recognition by MASP-2, zymogen and activated forms have been produced, and MBP.MASP-2 complexes have been created. These preparations have been used to show that MBP modulates MASP-2 activity in two ways. First, MBP stimulates MASP-2 autoactivation by increasing the rate of autocatalysis when MBP.MASP-2 complexes bind to a glycan-coated surface. Second, MBP occludes accessory C4-binding sites on MASP-2 until activation occurs. Once these sites become exposed, MASP-2 binds to C4 while separate structural changes create a functional catalytic site able to cleave C4. Only activated MASP-2 binds to C2, suggesting that this substrate interacts only near the catalytic site and not at accessory sites. MASP-1 cleaves C2 almost as efficiently as MASP-2 does, but it does not cleave C4. Thus MASP-1 probably enhances complement activation triggered by MBP.MASP-2 complexes, but it cannot initiate activation itself.  相似文献   

4.
MBL调控MASP激活补体系统   总被引:3,自引:0,他引:3  
甘露聚糖结合凝集素(MBL;或甘露聚糖结合蛋白,MBP)是由相同的多肽链组成的寡聚物,它通过结合细胞表面的碳水化合物能够有效地识别侵入体内的多种致病微生物,并激活补体来杀灭病原微生物。MBL能与血清中其相关蛋白酶(MASP)结合,MASP包含3个丝氨酸蛋白酶MASP-1、MASP-2、MASP-3和非酶蛋白MAp19。研究显示,MBL通过2种机理调控MASP-2的活性,在先天性免疫中具有重要的作用。本文简要综述MBL调控MASP激活补体的作用机理。  相似文献   

5.
Ficolins are oligomeric lectins comprising a collagen-like and a fibrinogen-like domain, with a binding specificity for N-acetylglucosamine. It has been reported recently that L-ficolin/P35 associates with mannan-binding lectin (MBL)-associated serine proteases (MASP-1 and -2) and MBL-associated protein 19 (MAp19) in serum and forms complexes able to activate complement. Using surface plasmon resonance spectroscopy we have shown that recombinant MASP-1 and -2, their N-terminal CUB1 (module originally found in complement proteins C1r/C1s, Uegf, and bone morphogenetic protein-1)-epidermal growth factor (EGF)-CUB2 and CUB1-EGF segments, and MAp19 bind to immobilized L-ficolin/P35 in the presence of Ca(2+) ions. Comparable K(d) values were obtained for the full-length proteases and their CUB1-EGF-CUB2 segments (9.2 and 10 nM for MASP-1 and 4.6 and 5.4 nM for MASP-2, respectively), whereas higher values were obtained for the CUB1-EGF segments (26.7, 15.6, and 14.3 nM for MASP-1, MASP-2, and MAp19). These values are in the same range as those determined for the interaction of these proteins with MBL. Binding was Ca(2+) dependent and was only partly sensitive to EDTA for MASP-1, MASP-2, and MASP-2 CUB1-EGF-CUB2. Half-maximal binding was obtained at comparable Ca(2+) concentrations for MASP-1 and MASP-2 (0.45 and 0.47 micro M, respectively), their CUB1-EGF-CUB2 segments (0.37 and 0.72 micro M), and their CUB1-EGF segments (0.31 and 0.79 micro M). These values are lower than those determined in the case of MBL, indicating a difference between MBL and L-ficolin/P35 with respect to the Ca(2+) dependence of their interaction with the MASPs. Preincubation of the MASPs with soluble MBL inhibited subsequent binding to immobilized L-ficolin/P35 and, conversely, suggesting that these lectins compete with each other for binding to the MASPs in vivo.  相似文献   

6.
Mutations in the collagen-like domain of serum mannose-binding protein (MBP) interfere with the ability of the protein to initiate complement fixation through the MBP-associated serine proteases (MASPs). The resulting deficiency in the innate immune response leads to susceptibility to infections. Studies have been undertaken to define the region of MBP that interacts with MASPs and to determine how the naturally occurring mutations affect this interaction. Truncated and modified MBPs and synthetic peptides that represent segments of the collagen-like domain of MBP have been used to demonstrate that MASPs bind on the C-terminal side of the hinge region formed by an interruption in the Gly-X-Y repeat pattern of the collagen-like domain. The binding sites for MASP-2 and for MASP-1 and -3 overlap but are not identical. The two most common naturally occurring mutations in MBP result in substitution of acidic amino acids for glycine residues in Gly-X-Y triplets on the N-terminal side of the hinge. Circular dichroism analysis and differential scanning calorimetry demonstrate that the triple helical structure of the collagen-like domain is largely intact in the mutant proteins, but it is more easily unfolded than in wild-type MBP. Thus, the effect of the mutations is to destabilize the collagen-like domain, indirectly disrupting the binding sites for MASPs. In addition, at least one of the mutations has a further effect on the ability of MBP to activate MASPs.  相似文献   

7.
Ficolins are a family of oligomeric proteins consisting of an N-terminal collagen-like domain and a C-terminal globular fibrinogen-like domain. They are novel lectins that employ the fibrinogen-like domain as a functional domain. Ficolins specifically recognize N-acetyl compounds such as N-acetylglucosamine, components of bacterial and fungal cell walls, and certain bacteria. Like mannose-binding lectin (MBL), ficolins circulate in complexes with MBL-associated serine proteases (MASPs). MASP complexes form with ficolins and MBL, thereby activating the complement through the lectin pathway. Upon binding of ficolins and MBL to carbohydrates on pathogens, MASPs convert to active forms, and subsequently activate the complement. The activated complements lead to pathogen phagocytosis, aggregation and lysis. In humans, three ficolins (L-, M- and H-ficolins) have been identified, which exhibit differences in tissue expression, protein location site, ligand-binding and bacteria-recognition, suggesting a specific role of each ficolin. In addition, these ficolins form complexes with three MASPs (MASP-1, MASP-2 and MASP-3) and two nonenzymatic proteins (sMAP and MAP-1), suggesting a highly sophisticated organization and regulated activation of the ficolin-dependent lectin pathway. This review provides an overview of our current knowledge of ficolins, especially human ficolins and their mouse homologues. We also discuss their possible physiological roles in innate immunity, especially their defensive role against bacterial infection.  相似文献   

8.
Mannan-binding lectin (MBL) is an oligomeric lectin that binds neutral carbohydrates on pathogens, forms complexes with MBL-associated serine proteases (MASP)-1, -2, and -3 and 19-kDa MBL-associated protein (MAp19), and triggers the complement lectin pathway through activation of MASP-2. To identify the MASP binding site(s) of human MBL, point mutants targeting residues C-terminal to the hinge region were produced and tested for their interaction with the MASPs and MAp19 using surface plasmon resonance and functional assays. Mutation Lys(55)Ala abolished interaction with the MASPs and MAp19 and prevented formation of functional MBL-MASP-2 complexes. Mutations Lys(55)Gln and Lys(55)Glu abolished binding to MASP-1 and -3 and strongly inhibited interaction with MAp19. Conversely, mutation Lys(55)Arg abolished interaction with MASP-2 and MAp19, but only weakened interaction with MASP-1 and -3. Mutation Arg(47)Glu inhibited interaction with MAp19 and decreased the ability of MBL to trigger the lectin pathway. Mutant Arg(47)Lys showed no interaction with the MASPs or MAp19, likely resulting from a defect in oligomerization. In contrast, mutation Arg(47)Ala had no impact on the interaction with the MASPs and MAp19, nor on the ability of MBL to trigger the lectin pathway. Mutation Pro(53)Ala only had a slight effect on the interaction with MASP-1 and -3, whereas mutations at residues Leu(49) and Leu(56) were ineffective. In conclusion, the MASP binding site of MBL involves a sequence stretch centered on residue Lys(55), which may form an ionic bond representing the major component of the MBL-MASP interaction. The binding sites for MASP-2/MAp19 and MASP-1/3 have common features but are not strictly identical.  相似文献   

9.
Mannose-binding lectin-associated serine proteases (MASPs) are involved in complement activation through the lectin pathway. To elucidate the phylogenetic origin of MASP and a primordial complement system, we cloned two MASP cDNAs from amphioxus (Branchiostoma belcheri) of the cephalochordates, considered to be the closest relative of vertebrates. The two sequences, orthologues of mammalian MASP-1 and MASP-3, were produced by alternative processing of RNA from a single gene consisting of a common H chain-encoding region and two L chain-encoding regions, a structure which is similar to that of the human MASP1/3 gene. We also isolated two MASP genes from the ascidian Halocynthia roretzi (urochordates) and found that each of them consists simply of an H chain-encoding region and a single L chain-encoding region. The difference in structure between the ascidian MASP genes and the amphioxus/mammalian MASP genes suggests that a prototype gene was converted to the MASP1/3-type gene possessing two L chain-encoding regions at an early stage of evolution before the divergence of amphioxus. This conclusion is supported by the presence of MASP-1 and MASP-3 homologues in almost all vertebrates, as demonstrated by the cloning of novel cDNA sequences representing lamprey (cyclostomes) MASP-1 and Xenopus MASP-3. The ancient origin of MASP-1 and MASP-3 suggests that they have crucial functions common to all species which emerged after cephalochordates.  相似文献   

10.
11.
MASP-1 and MASP-3 are homologous proteases arising from alternative splicing of the MASP1/3 gene. They include an identical CUB(1)-EGF-CUB(2)-CCP(1)-CCP(2) module array prolonged by different serine protease domains at the C-terminal end. The x-ray structure of the CUB(1)-EGF-CUB(2) domain of human MASP-1/3, responsible for interaction of MASP-1 and -3 with their partner proteins mannan-binding lectin (MBL) and ficolins, was solved to a resolution of 2.3A(.) The structure shows a head-to-tail homodimer mainly stabilized by hydrophobic interactions between the CUB(1) module of one monomer and the epidermal growth factor (EGF) module of its counterpart. A Ca(2+) ion bound primarily to both EGF modules stabilizes the intra- and inter-monomer CUB(1)-EGF interfaces. Additional Ca(2+) ions are bound to each CUB(1) and CUB(2) module through six ligands contributed by Glu(49), Asp(57), Asp(102), and Ser(104) (CUB(1)) and their counterparts Glu(216), Asp(226), Asp(263), and Ser(265) (CUB(2)), plus one and two water molecules, respectively. To identify the residues involved in interaction of MASP-1 and -3 with MBL and L- and H-ficolins, 27 point mutants of human MASP-3 were generated, and their binding properties were analyzed using surface plasmon resonance spectroscopy. These mutations map two homologous binding sites contributed by modules CUB(1) and CUB(2), located in close vicinity of their Ca(2+)-binding sites and stabilized by the Ca(2+) ion. This information allows us to propose a model of the MBL-MASP-1/3 interaction, involving a major electrostatic interaction between two acidic Ca(2+) ligands of MASP-1/3 and a conserved lysine of MBL. Based on these and other data, a schematic model of a MBL.MASP complex is proposed.  相似文献   

12.
Both ficolins and mannose-binding lectin (MBL) are lectins characterized by the presence of collagen-like and carbohydrate-binding domains in a subunit, although their carbohydrate-binding moieties are quite different. A fibrinogen-like domain is in ficolins, and a carbohydrate recognition domain is in MBL. On binding to pathogens, human MBL activates the complement system via the lectin pathway in association with two types of MBL-associated serine proteases (MASP), MASP-1 and MASP-2 and its truncated form, small MBL-associated protein (sMAP, also called MAp19). We report here that ficolin/P35, a human serum ficolin, was found to copurify with MASPs and sMAP. MASPs that were complexed with ficolin/P35 exhibited proteolytic activities against complement components C4, C2, and C3. The ficolin/P35-MASPs-sMAP complex that was bound to Salmonella typhimurium activated complement. These findings indicate that ficolin/P35 is a second collagenous lectin capable of activating the lectin pathway and thus plays a role in innate immunity.  相似文献   

13.
The lectin pathway of the complement system is activated following the binding of carbohydrate-based ligands by recognition molecules such as mannose-binding lectin (MBL) or ficolins. Engagement of the recognition molecules causes activation of associated MBL-associated serine proteases or MASPs, which in turn activate downstream complement molecules to activate the system. Two MASP genes are alternatively spliced during expression to yield 5 proteins, including three proteases (MASP-1, -2 and -3) and two truncated proteins, MAp19 and MAp44. Here we discuss what is currently known about these proteins in terms of their structure and function. MASP-2 is autoactivated following the initial binding events of the pathway and is able to subsequently activate the C4 and C2 substrates required to activate the rest of the pathway. MASP-1 is able to augment MASP-2 activation, but also appears to play other roles, although the physiological significance of these is not yet clear. The roles of the truncated Map19 and Map44 proteins and the MASP-3 protease are currently unknown. The proteases form an interesting sub-family of proteins that clearly should be the focus of future research in order to establish their biological roles.This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

14.
The lectin pathway is an antibody-independent activation route of the complement system. It provides immediate defense against pathogens and altered self-cells, but it also causes severe tissue damage after stroke, heart attack, and other ischemia reperfusion injuries. The pathway is triggered by target binding of pattern recognition molecules leading to the activation of zymogen mannan-binding lectin-associated serine proteases (MASPs). MASP-2 is considered as the autonomous pathway-activator, while MASP-1 is considered as an auxiliary component. We evolved a pair of monospecific MASP inhibitors. In accordance with the key role of MASP-2, the MASP-2 inhibitor completely blocks the lectin pathway activation. Importantly, the MASP-1 inhibitor does the same, demonstrating that MASP-1 is not an auxiliary but an essential pathway component. We report the first Michaelis-like complex structures of MASP-1 and MASP-2 formed with substrate-like inhibitors. The 1.28 Å resolution MASP-2 structure reveals significant plasticity of the protease, suggesting that either an induced fit or a conformational selection mechanism should contribute to the extreme specificity of the enzyme.  相似文献   

15.
The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding was observed. Interaction of calreticulin with recombinant MBL was fully inhibited by recombinant MASP-2, MASP-3 and MAp19, but not by the MASP-2 D105G and MAp19 Y59A variants characterized by defective MBL binding ability. Furthermore, MBL point mutants with impaired MASP binding showed no interaction with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion, the potential MBL co-receptor calreticulin binds to MBL at the MASP binding site and the interaction may involve a conformational change in MBL.  相似文献   

16.
Nakao M  Osaka K  Kato Y  Fujiki K  Yano T 《Immunogenetics》2001,52(3-4):255-263
The classical pathway of complement composed of C1, C4, and C2 is an antibody-dependent activation cascade that is present in jawed vertebrates. C1 is a Ca2+-dependent complex of C1q, C1r, and C1s, and analogous to an initiation complex of the lectin pathway of complement, which consists of the mannose-binding lectin (MBL) homologous to C1q and the MBL-associated serine proteases (MASPs) homologous to C1r and C1s. Thus divergence of Clq and MBL and that of C1r, C1s and the MASPs are considered to be crucial events in the establishment and evolution of the classical complement pathway. However, molecular information on the C1 subcomponents is very limited in lower vertebrates. Here we describe two distinct C1r/C1s/MASP2-like cDNA clones (C1r/s-A, C1r/s-B) isolated from the common carp (Cyprinus carpio). They share 83% identity at the amino acid level and have a domain structure similar to that of C1r/C1s/MASPs from other species. The serine protease domain of the carp homologues lacks the histidine loop and is encoded by a single exon containing an AGY codon for the active serine residue, as in mammalian C1r, C1s, and MASP2. Southern blot and PCR analyses indicated that the carp has at least three copies of the C1r/s-A gene and a single C1r/s-B gene. Although phylogenetic tree analysis does not definitively assign carp C1r/s-A and C1r/s-B, they might represent ancestral molecules which later diverged into C1r, C1s, and MASP2 of higher vertebrates.  相似文献   

17.
Mannose (or mannan)-binding lectin (MBL) is an oligomeric serum lectin that plays a role in innate immunity by activating the complement system. In human, two types of MBL-associated serine protease (MASP-1 and MASP-2) and a truncated protein of MASP-2 (small MBL-associated protein; sMAP or MAp19) are complexed with MBL. To clarify the proteolytic activities of MASP-1 and MASP-2 against C4, C2, and C3, we isolated these two types of MASP in activated forms from human serum by sequential affinity chromatography. On an anti-MASP-1 column, MASP-2 passed through the column in the presence of EDTA and high salt concentration, whereas MASP-1 was retained. Isolated MASP-1 and MASP-2 exhibited proteolytic activities against C3 and C4, respectively. C2 was activated by both MASPs. C1 inhibitor (C1 INH), an inhibitor for C1r and C1s, formed equimolar complexes with MASP-1 and MASP-2 and inhibited their proteolytic activities.  相似文献   

18.
Mannan-binding lectin (MBL) forms a multimolecular complex with at least two MBL-associated serine proteases, MASP-1 and MASP-2. This complex initiates the MBL pathway of complement activation by binding to carbohydrate structures present on bacteria, yeast, and viruses. MASP-1 and MASP-2 are composed of modular structural motifs similar to those of the C1q-associated serine proteases C1r and C1s. Another protein of 19 kDa with the same N-terminal sequence as the 76-kDa MASP-2 protein is consistently detected as part of the MBL/MASP complex. In this study, we present the primary structure of this novel MBL-associated plasma protein of 19 kDa, MAp19, and demonstrate that MAp19 and MASP-2 are encoded by two different mRNA species generated by alternative splicing/polyadenylation from one structural gene.  相似文献   

19.
Mannan-binding lectin (MBL) is an oligomeric C-type lectin assembled from homotrimeric structural units that binds to neutral carbohydrates on microbial surfaces. It forms individual complexes with MBL-associated serine proteases (MASP)-1, -2, -3 and a truncated form of MASP-2 (MAp19) and triggers the lectin pathway of complement through MASP-2 activation. To characterize the oligomerization state of the two major MBL forms present in human serum, both proteins were analyzed by mass spectrometry. Mass values of 228,098 +/- 170 Da (MBL-I) and 304,899 +/- 229 Da (MBL-II) were determined for the native proteins, whereas reduction of both species yielded a single chain with an average mass of 25,340 +/- 18 Da. This demonstrates that MBL-I and -II contain 9 and 12 disulfide-linked chains, respectively, and therefore are trimers and tetramers of the structural unit. As shown by surface plasmon resonance spectroscopy, trimeric and tetrameric MBL bound to immobilized mannose-BSA and N-acetylglucosamine-BSA with comparable K(D) values (2.2 and 0.55 nM and 1.2 and 0.96 nM, respectively). However, tetrameric MBL exhibited significantly higher maximal binding capacity and lower dissociation rate constants for both carbohydrates. In contrast, no significant difference was detected for binding of the recombinant MASPs or MAp19 to immobilized trimeric or tetrameric MBL. As shown by gel filtration, both MBL species formed 1:2 complexes with MASP-3 or MAp19. These results provide the first precise analysis of the major human MBL oligomers. The oligomerization state of MBL has a direct effect on its carbohydrate-binding properties, but no influence on the interaction with the MASPs.  相似文献   

20.
Mannan-binding lectin (MBL), ficolins and collectin-11 are known to associate with three homologous modular proteases, the MBL-Associated Serine Proteases (MASPs). The crystal structures of the catalytic domains of MASP-1 and MASP-2 have been solved, but the structure of the corresponding domain of MASP-3 remains unknown. A link between mutations in the MASP1/3 gene and the rare autosomal recessive 3MC (Mingarelli, Malpuech, Michels and Carnevale,) syndrome, characterized by various developmental disorders, was discovered recently, revealing an unexpected important role of MASP-3 in early developmental processes. To gain a first insight into the enzymatic and structural properties of MASP-3, a recombinant form of its serine protease (SP) domain was produced and characterized. The amidolytic activity of this domain on fluorescent peptidyl-aminomethylcoumarin substrates was shown to be considerably lower than that of other members of the C1r/C1s/MASP family. The E. coli protease inhibitor ecotin bound to the SP domains of MASP-3 and MASP-2, whereas no significant interaction was detected with MASP-1, C1r and C1s. A tetrameric complex comprising an ecotin dimer and two MASP-3 SP domains was isolated and its crystal structure was solved and refined to 3.2 Å. Analysis of the ecotin/MASP-3 interfaces allows a better understanding of the differential reactivity of the C1r/C1s/MASP protease family members towards ecotin, and comparison of the MASP-3 SP domain structure with those of other trypsin-like proteases yields novel hypotheses accounting for its zymogen-like properties in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号