共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry. 相似文献
2.
Tracy A. Larson 《Developmental biology》2010,346(2):296-309
The processes of myelination remain incompletely understood but are of profound biomedical importance owing to the several dysmyelinating and demyelinating disorders known in humans. Here, we analyze the zebrafish puma mutant, isolated originally for pigment pattern defects limited to the adult stage. We show that puma mutants also have late-arising defects in Schwann cells of the peripheral nervous system, locomotor abnormalities, and sex-biased defects in adult craniofacial morphology. Using methods of positional cloning, we identify a critical genetic interval harboring two alpha tubulin loci, and we identify a chemically induced missense mutation in one of these, tubulin alpha 8-like 3a (tuba8l3a). We demonstrate tuba8l3a expression in the central nervous system (CNS), leading us to search for defects in the development of oligodendrocytes, the myelinating cells of the CNS. We find gross reductions in CNS myelin and oligodendrocyte numbers in adult puma mutants, and these deficits are apparent already during the larval-to-adult transformation. By contrast, analyses of embryos and early larvae reveal a normal complement of oligodendrocytes that nevertheless fail to localize normal amounts of myelin basic protein (mbp) mRNA in cellular processes, and fail to organize these processes as in the wild-type. This study identifies the puma mutant as a valuable model for studying microtubule-dependent events of myelination, as well as strategies for remyelination in the adult. 相似文献
3.
Here, we used classical genetics in zebrafish to identify temperature-sensitive mutants in caudal fin regeneration. Gross morphological, histological, and molecular analyses revealed that one of these strains, emmental (emm), failed to form a functional regeneration blastema. Inhibition of emm function by heat treatment during regenerative outgrowth rapidly blocked regeneration. This block was associated with reduced proliferation in the proximal blastema and expansion of the nonproliferative distal blastemal zone. Positional cloning revealed that the emm phenotype is caused by a mutation in the orthologue of yeast sly1, a gene product involved in protein trafficking. sly1 is upregulated in the newly formed blastema as well as during regenerative outgrowth. Thus, sly1 is essential for blastemal organization and proliferation during two stages of fin regeneration. 相似文献
4.
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization. 相似文献
5.
Saxena S Singh SK Lakshmi MG Meghah V Bhatti B Swamy CV Sundaram CS Idris MM 《Molecular & cellular proteomics : MCP》2012,11(6):M111.014118
The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism. 相似文献
6.
A highly conserved TGF-&bgr; signaling pathway is involved in the establishment of the dorsoventral axis of the vertebrate embryo. Specifically, Bone Morphogenetic Proteins (Bmps) pattern ventral tissues of the embryo while inhibitors of Bmps, such as Chordin, Noggin and Follistatin, are implicated in dorsal mesodermal and neural development. We investigated the role of Tolloid, a metalloprotease that can cleave Chordin and increase Bmp activity, in patterning the dorsoventral axis of the zebrafish embryo. Injection of tolloid mRNA into six dorsalized mutants rescued only one of these mutants, mini fin. Through chromosomal mapping, linkage and cDNA sequence analysis of several mini fin alleles, we demonstrate that mini fin encodes the tolloid gene. Characterization of the mini fin mutant phenotype reveals that Mini fin/Tolloid activity is required for patterning ventral tissues of the tail: the ventral fin, and the ventroposterior somites and vasculature. Gene expression studies show that mfn mutants exhibit reduced expression of ventrally restricted markers at the end of gastrulation, suggesting that the loss of ventral tail tissues is caused by a dorsalization occurring at the end of gastrulation. Based on the mini fin mutant phenotype and the expression of tolloid, we propose that Mini fin/Tolloid modifes the Bmp activity gradient at the end of gastrulation, when the ventralmost marginal cells of the embryo are in close proximity to the dorsal Chordin-expressing cells. At this time, unimpeded Chordin may diffuse to the most ventral marginal regions and inhibit high Bmp activity levels. In the presence of Mini fin/Tolloid, however, Chordin activity would be negatively modulated through proteolytic cleavage, thereby increasing Bmp signaling activity. This extracellular mechanism is amplified by an autoregulatory loop for bmp gene expression. 相似文献
7.
A Droin 《The Journal of experimental zoology》1992,264(2):196-205
White lethal (wl) is a recessive mutation affecting the differentiation of the three types of chromatophores in Xenopus laevis and eventually leading to the death of the mutants around stage 50. Melanophores appear at st. 33 but differentiate abnormally, remaining pale grey, and do not proliferate after st. 41. The rare xanthophores present contain only a few differentiated pterinosomes, and the iridophores consist of noniridescent white dots. When the albino gene (ap) is combined with wl, melanophores do not differentiate. Reciprocal heterotopic and orthotopic trunk neural crest grafts have shown that the defect is intrinsic to the neural crest cells but is not due, in the case of melanophores, to a tyrosinase deficiency as revealed by the dopa reaction. The mode of action of the gene, the abnormal pattern, and lethality are discussed. 相似文献
8.
Keith A. Hultman 《Developmental biology》2010,337(2):425-3589
The extent of adult stem cell involvement in embryonic growth is often unclear, as reliable markers or assays for whether a cell is derived from an adult stem cell, such as the melanocyte stem cell (MSC), are typically not available. We have previously shown that two lineages of melanocytes can contribute to the larval zebrafish pigment pattern. The embryo first develops an ontogenetic pattern that is largely composed of ErbB-independent, direct-developing melanocytes. This population can be replaced during regeneration by an ErbB-dependent MSC-derived population following melanocyte ablation. In this study, we developed a melanocyte differentiation assay used together with drugs that ablate the MSC to investigate whether MSC-derived melanocytes contribute to the ontogenetic pattern. We found that essentially all melanocytes that develop before 3 dpf arise from the ErbB-independent, direct-developing population. Similarly, late-developing (after 3 dpf) melanocytes of the head are also ErbB independent. In contrast, the melanocytes that develop after 3 days postfertilization in the lateral and dorsal stripe are sensitive to ErbB inhibitor, indicating that they are derived from the MSC. We show that melanocyte regeneration mutants kitj1e99 and skiv2l2j24e1 that are grossly normal for the overall ontogenetic pattern also lack the MSC-derived contribution to the lateral stripe. This result suggests that the underlying regeneration defect of these mutations is a defect in MSC regulation. We suggest that the regulative functions of the MSC may serve quality control roles during larval development, in addition to its established roles in larval regeneration and growth and homeostasis in the adult. 相似文献
9.
10.
T Yano G Abe H Yokoyama K Kawakami K Tamura 《Development (Cambridge, England)》2012,139(16):2916-2925
Fins and limbs, which are considered to be homologous paired vertebrate appendages, have obvious morphological differences that arise during development. One major difference in their development is that the AER (apical ectodermal ridge), which organizes fin/limb development, transitions into a different, elongated organizing structure in the fin bud, the AF (apical fold). Although the role of AER in limb development has been clarified in many studies, little is known about the role of AF in fin development. Here, we investigated AF-driven morphogenesis in the pectoral fin of zebrafish. After the AER-AF transition at ~36 hours post-fertilization, the AF was identifiable distal to the circumferential blood vessel of the fin bud. Moreover, the AF was divisible into two regions: the proximal AF (pAF) and the distal AF (dAF). Removing the AF caused the AER and a new AF to re-form. Interestingly, repeatedly removing the AF led to excessive elongation of the fin mesenchyme, suggesting that prolonged exposure to AER signals results in elongation of mesenchyme region for endoskeleton. Removal of the dAF affected outgrowth of the pAF region, suggesting that dAF signals act on the pAF. We also found that the elongation of the AF was caused by morphological changes in ectodermal cells. Our results suggest that the timing of the AER-AF transition mediates the differences between fins and limbs, and that the acquisition of a mechanism to maintain the AER was a crucial evolutionary step in the development of tetrapod limbs. 相似文献
11.
M Varga M Sass D Papp K Takács-Vellai J Kobolak A Dinnyés D J Klionsky T Vellai 《Cell death and differentiation》2014,21(4):547-556
Regeneration is the ability of multicellular organisms to replace damaged tissues and regrow lost body parts. This process relies on cell fate transformation that involves changes in gene expression as well as in the composition of the cytoplasmic compartment, and exhibits a characteristic age-related decline. Here, we present evidence that genetic and pharmacological inhibition of autophagy – a lysosome-mediated self-degradation process of eukaryotic cells, which has been implicated in extensive cellular remodelling and aging – impairs the regeneration of amputated caudal fins in the zebrafish (Danio rerio). Thus, autophagy is required for injury-induced tissue renewal. We further show that upregulation of autophagy in the regeneration zone occurs downstream of mitogen-activated protein kinase/extracellular signal-regulated kinase signalling to protect cells from undergoing apoptosis and enable cytosolic restructuring underlying terminal cell fate determination. This novel cellular function of the autophagic process in regeneration implies that the role of cellular self-digestion in differentiation and tissue patterning is more fundamental than previously thought. 相似文献
12.
Roles for Fgf signaling during zebrafish fin regeneration 总被引:7,自引:0,他引:7
Poss KD Shen J Nechiporuk A McMahon G Thisse B Thisse C Keating MT 《Developmental biology》2000,222(2):347-358
13.
14.
Colour patterns are a prominent feature of many animals and are of high evolutionary relevance. In zebrafish, the adult pigment pattern comprises alternating stripes of two pigment cell types, melanophores and xanthophores. How the stripes are defined and a straight boundary is formed remains elusive. We find that mutants lacking one pigment cell type lack a striped pattern. Instead, cells of one type form characteristic patterns by homotypic interactions. Using mosaic analysis, we show that juxtaposition of melanophores and xanthophores suffices to restore stripe formation locally. Based on this, we have analysed the pigment pattern of two adult specific mutants: leopard and obelix. We demonstrate that obelix is required in melanophores to promote their aggregation and controls boundary integrity. By contrast, leopard regulates homotypic interaction within both melanophores and xanthophores, and interaction between the two, thus controlling boundary shape. These findings support a view in which cell-cell interactions among pigment cells are the major driving force for adult pigment pattern formation. 相似文献
15.
16.
18.
Fate restriction in the growing and regenerating zebrafish fin 总被引:1,自引:0,他引:1
We use transposon-based clonal analysis to identify the lineage classes that make the adult zebrafish caudal fin. We identify nine distinct lineage classes, including epidermis, melanocyte/xanthophore, iridophore, intraray glia, lateral line, osteoblast, dermal fibroblast, vascular endothelium, and resident blood. These lineage classes argue for distinct progenitors, or organ founding stem cells (FSCs), for each lineage, which retain fate restriction throughout growth of the fin. Thus, distinct FSCs exist for the four neuroectoderm lineages, and dermal fibroblasts are not progenitors for fin ray osteoblasts; however, artery and vein cells derive from a shared lineage in the fin. Transdifferentiation of cells or lineages in the regeneration blastema is often postulated. However, our studies of single progenitors or FSCs reveal no transfating or transdifferentiation between these lineages in the regenerating fin. This result shows that, the same as in growth, lineages retain fate restriction when passed through the regeneration blastema. 相似文献
19.
目的建立生长激素过表达的转基因斑马鱼,研究生长激素在斑马鱼尾鳍再生过程中的作用。方法利用Gateway技术构建表达质粒"pDestTol2CG2; ubi:GH-polyA",在一细胞期显微注射表达质粒和转座酶mRNA后,通过荧光显微镜和qPCR技术筛选鉴定GH过表达的转基因斑马鱼。将斑马鱼分为对照组(野生型)和生长激素过表达组,尾鳍横切后,记录分析斑马鱼尾鳍再生过程。结果转基因斑马鱼中心脏被绿色荧光蛋白标记。荧光定量PCR检测结果显示GH表达水平显著高于对照组(P<0.05)。斑马鱼尾鳍横断后,生长激素过表达组的再生速度显著提高(P<0.05)。结论建立稳定生长激素过表达的转基因斑马鱼品系,过表达生长激素能够提高斑马鱼尾鳍再生速度。 相似文献
20.
Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration 总被引:1,自引:0,他引:1
Unlike humans, some vertebrate animals are able to completely regenerate damaged appendages and other organs. For example, adult zebrafish will regenerate the complex structure of an amputated caudal fin to a degree that the original and replacement fins are indistinguishable. The blastema, a mass of cells that uniquely forms following appendage amputation in regenerating animals, is the major source of regenerated tissue. However, the cell lineage(s) that contribute to the blastema and their ultimate contribution(s) to the regenerated fin have not been definitively characterized. It has been suggested that cells near the amputation site dedifferentiate forming multipotent progenitors that populate the blastema and then give rise to multiple cell types of the regenerated fin. Other studies propose that blastema cells are non-uniform populations that remain restricted in their potential to contribute to different cell lineages. We tested these models by using inducible Cre-lox technology to generate adult zebrafish with distinct, isolated groups of genetically labeled cells within the caudal fin. We then tracked populations of several cell types over the entire course of fin regeneration in individual animals. We found no evidence for the existence of multipotent progenitors. Instead, multiple cell types, including epidermal cells, intra-ray fibroblasts, and osteoblasts, contribute to the newly regenerated tissue while remaining highly restricted with respect to their developmental identity. Our studies further demonstrate that the regenerating fin consists of many repeating blastema "units" dedicated to each fin ray. These blastemas each have an organized structure of lineage restricted, dedifferentiated cells that cooperate to regenerate the caudal fin. 相似文献