首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peroxidase is exuded from roots of Festuca rubra under axenic conditions. No phenolase was detected. Peroxidase can use phenolic acids. probably differentially, as hydrogen donors for the H2O2 substrate and could thus have an effect on the qualitative and quantitative determinations of phenolic acids also exuded by plants.  相似文献   

2.
3.
    
p-Coumaric and 3-O-p-coumarylquinic acid seem to be important precursors of chlorogenic acid in the leaves of Cestrum poeppigii. 3-O-Cinnamylquinic acid, which has a very small metabolic activity, is of little importance in this respect. The kinetics of incorporation of radioactivity from t-cinnamic acid-3-[14C] into p-coumaric, 3-O-p-coumarylquinic, chlorogenic and 3-O-cinnamylquinic acid showed that the biosynthetic rates for these products decrease in the order shown. For p-coumaric acid, which has a markedly high metabolic activity, a turnover rate of 28 μg/hr and per gram fresh plant leaf, was calculated. Some trapping experiments with caffeic acid, and the acids mentioned above and using either t-cinnamic acid-3-[14C] or p-coumaric acid-2-[14C] as precursor, are discussed. A HPLC method for the rapid determination of phenolic acids in plant extracts, is described.  相似文献   

4.
The synthesis of structured phenolic lipids by lipase-catalyzed transesterification of selected phenolic acids, including p-hydroxyphenyl acetic, p-coumaric, sinapic, ferulic and 3,4-dihydroxybenzoic acids, with triolein was investigated. The highest enzymatic activity (248?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (62%) was obtained for the transesterification of p-hydroxyphenyl acetic acid with triolein. In addition, the transesterification of p-coumaric with triolein resulted in a higher enzymatic activity (87?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (46%) than those obtained for the transesterfication of ferulic and sinapic acids. The results also showed that using p-hydroxyphenyl acetic, p-coumaric and ferulic acids as substrate, the maximum bioconversion of phenolic monoacylglycerols was close to that of phenolic diacylglycerols. Although p-coumaric acid had very low radical scavenging activity (2%) compared to that of ferulic acid (62%), the p-coumaroylated lipids demonstrated a higher scavenging potency (16%) than that of the feruloylated one (10%).  相似文献   

5.
The synthesis of structured phenolic lipids by lipase-catalyzed transesterification of selected phenolic acids, including p-hydroxyphenyl acetic, p-coumaric, sinapic, ferulic and 3,4-dihydroxybenzoic acids, with triolein was investigated. The highest enzymatic activity (248 nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (62%) was obtained for the transesterification of p-hydroxyphenyl acetic acid with triolein. In addition, the transesterification of p-coumaric with triolein resulted in a higher enzymatic activity (87 nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (46%) than those obtained for the transesterfication of ferulic and sinapic acids. The results also showed that using p-hydroxyphenyl acetic, p-coumaric and ferulic acids as substrate, the maximum bioconversion of phenolic monoacylglycerols was close to that of phenolic diacylglycerols. Although p-coumaric acid had very low radical scavenging activity (2%) compared to that of ferulic acid (62%), the p-coumaroylated lipids demonstrated a higher scavenging potency (16%) than that of the feruloylated one (10%).  相似文献   

6.
Cross-Talk between Reactive Oxygen Species and Calcium in Living Cells   总被引:5,自引:0,他引:5  
The results of many investigations have shown that calcium is essential for production of reactive oxygen species (ROS). Elevation of intracellular calcium level is responsible for activation of ROS-generating enzymes and formation of free radicals by the mitochondria respiratory chain. On the other hand, an increase in intracellular calcium concentration may be stimulated by ROS. H2O2 has been recently shown to accelerate the overall channel opening process in voltage-dependent calcium channels in plant and animal cells. The 1,4,5-inositol-triphosphate-receptors as well as the ryanodine receptors of sarcoplasmic reticulum have also been demonstrated to be redox-regulated. Activity of Ca2+-ATPases and Na2+/Ca2+ exchangers of animal cells are modulated by the intracellular redox state. Simultaneously, Ca2+ may activate antioxidant enzymes, such as plant catalase and glutathione reductase, and increase the level of superoxide dismutase in animal cells. Reviewed data support the speculation that Ca2+ and ROS are two cross-talking messengers in various cellular processes.  相似文献   

7.
Congenital myasthenic syndromes (CMS) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. The causal mutations have been described in number of cases. The slow channel myasthenic syndrome (slow-channel-CMS) results in a marked prolongation of channel opening in stimulated receptors (nAChR) and the end plate acetylcholinesterase (AChE) deficiency congenital myasthenic syndrome (ColQ-CMS) results in an increased action of acetylcholine (ACh) at the synapse. Anticholinesterase medication is detrimental in these cases. The successful treatment of slow-channel-CMS patients with the antidepressant serotonin re-uptake inhibitor fluoxetine has been reported. At high concentration it has a non-depolarizing effect on nicotinic receptors. This led us to the idea that fluoxetine could protect AChR from a relative excess of ACh. We investigated the possible use of fluoxetine as treatment in the AChE KO mouse. Treatment at 6mg/kg from 3 weeks to 2 months increased slightly the daily weight gain but not the final weight at 2 months in AChE-/- mice. Isometric force production of Tibialis anterior in response to electric nerve stimulation was measured in situ in AChE-/- and wild type mice treated or not by fluoxetine. The results show that the maximum twitch force in response to a single nerve stimulation, the maximal tetanic force (P0) in response to repetitive nerve stimulation and the tetanic fade are not changed in AChE-/- mice treated with fluoxetine versus control AChE-/- mice.  相似文献   

8.
This study is the first on combined HPLC and MALDI-TOF MS analysis of phenolic acids. The analyses were carried out for phenolic acid mixtures and showed a unique, individual co-crystalline pattern for each phenolic acid. HPLC could distinguish phenolic acids and MALDI-TOF MS provided comparable mass (m/z) profiles for the samples. This combined study proved to be rapid in the accurate identification and structural analysis of phenolic acids with different masses.  相似文献   

9.
以黑龙江省大豆重茬 5年与正茬土壤和根系为主要研究对象 ,采用高效液相色谱法 ,研究土壤和根系浸提液中的酚酸物质的含量及其生物学效应 .结果表明 ,重茬土壤中对羟基苯甲酸和香草酸的含量 (1mol·L-1NaOH提取 )大于正茬土壤 ,且差异达到极显著水平 ,香草醛含量差异不显著 ;重茬大豆根系水提液中对羟基苯甲酸、香草酸、阿魏酸、香草醛、香豆素含量均高于正茬 .大豆连作条件下土壤多酚氧化酶活性高于正茬土壤 .重茬大豆根系水提液及在水培条件下外加对羟基苯甲酸对大豆幼苗生长发育有一定的抑制作用 ;酚酸物质加入土壤 1周后 ,对羟基苯甲酸、香草酸、香草醛、阿魏酸、苯甲酸、香豆素残留率分别为 10 .4%、15 .3 %、4.1%、2 .3 %、5 .0 %、17.5 % ;且外加酚酸浓度与土壤中真菌数量呈极显著指数相关 .  相似文献   

10.
11.
The function in plants of the non-protein amino acid, gamma-aminobutyric acid (GABA) is poorly understood. In this study, we show that GABA down-regulates the expression of a large subset of 14-3-3 gene family members in Arabidopsis thaliana seedlings in a calcium, ethylene and abscisic acid (ABA)-dependent manner. Gene expression is not affected when seedlings are supplied with glutamate (GLU), a precursor of GABA. The repression of 14-3-3 gene expression by GABA is dependent on functional ethylene and ABA signalling pathways, because the response is lost in the etr1-1, abi1-1 and abi2-1 mutants. Calcium measurements show that in contrast to GLU, GABA does not elicit a cytoplasmic calcium elevation, suggesting that the GABA response is unlikely to be mediated by GLU receptors (GLRs), as has been suggested previously. We suggest that in addition to its role as a stress-related metabolite, GABA may regulate gene expression in A. thaliana, including members of the 14-3-3 gene family.  相似文献   

12.
13.
Methionine deficiency in rats caused significant decrease in the concentration of many sulphated glycosaminoglycans in the aorta and other tissues, while administration of excess methionine caused an increase in these constituents. The activity of some important biosynthetic enzymes decreased in methionine deficiency and increased on administration of excess methionine. No uniform pattern was observed in the changes in the activity of enzymes concerned with degradation of glycosaminoglycans. The concentration of 3′-phosphoade-nosine 5′-phosphosulphate and the activities of the sulphate activating system and sulpho-transferase were decreased in methionine deficiency, while feeding excess methionine did not affect these parameters as compared to controls.  相似文献   

14.
Phenolic acids, low molecular weight phenolics, are precursors of a variety of antimicrobial compounds, root signalling molecules, and phytoalexins that play an important role in plant defence responses. In agro ecosystem, a large amount of litter is turned over during the cropping season, fallow period and land preparation. This releases a flush of phenolic acids, amounts of which exceed very much the quantities released in root exudation. In rhizobial inoculation of legumes, these phenolic acids, depending on the concentration, may affect the persistence of rhizobia in the soil and their symbiotic efficiency, in terms of N2 fixation. The present study evaluates the effects of different concentrations of four phenolic acids (protocatechuic, p-coumaric, ferulic and vanillic) on population size of four rhizobial strains (Bradyrhizobium elkanii SEMIA 5019, B. japonicum TAL 102 and TAL 620, and Azorhizobium caulinodans ORS 571). Culture media with different concentrations of phenolic acids in the presence or absence of manitol were used to evaluate rhizobial population size on day 6. Rhizobial total proteins were extracted and electrophoresed on polyacrylamide gels. Further, the effects of phenolic acid-affected rhizobia on N2 fixing capacity were also investigated by inoculating two of those strains to soybean. Phenolic acid-treated B. elkanii SEMIA 5019 and B. japonicum TAL 102 were inoculated to soybean, and plant growth, N accumulation and nodule dry weight were assessed in a pot experiment. The population size of TAL 102 was induced when the culture medium was supplied with different phenolic acids as the sole carbon source. In many cases, the presence of manitol in the medium masked the differential effects of phenolic acids on the rhizobial population size. All four phenolic acids used in our study suppressed the population size of TAL 620. Strain ORS 571 showed low population size at low concentrations followed by a growth recovery at high phenolic acid concentrations. Strain SEMIA 5019 treated with 0.03 mM ferulic acid produced the highest increase in shoot growth of soybean, (ca. 65%). Treating strain SEMIA 5019 with 9 mM protocatechuic acid produced the largest decrease in nodule dry weight (ca. 50%) without any significant changes in shoot N accumulation. P-coumaric acid, even at 0.12 mM, could stimulate the N2 fixing activity of SEMIA 5019, whereas the same concentration reduced the effectiveness of TAL102 in a soybean-rhizobium symbiosis. Phenolic acid interactions with rhizobia led to biochemical, and hence physiological changes, resulting in an alteration in their symbiotic ability. Different leguminous plants secrete different phenolic compounds other than phenolic acids during root exudation. Further studies should therefore be conducted to evaluate the effects of those compounds on the symbiosis. It is concluded from this study that the effect of phenolic acids is concentration and structure dependant, and strain-specific. The effect will also be pH dependant. Thus, phenolic acids are possible agents for modifying the legume-rhizobial symbiosis.  相似文献   

15.
Aldose reductase (AR) inhibitors have vital importance in the treatment and prevention of diabetic complications. In this study, rat kidney AR was purified 19.34-fold with a yield of 3.49% and a specific activity of 0.88?U/mg using DE-52 Cellulose anion exchange chromatography, gel filtration chromatography and 2′5′ ADP Sepharose-4B affinity chromatography, respectively. After purification, the in vitro inhibition effects of some phenolic acids (tannic acid, chlorogenic acid, sinapic acid, protocatechuic acid, 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, α-resorcylic acid, 3-hydroxybenzoic acid and gallic acid) were investigated on purified enzyme. We determined IC50, Ki values and inhibition types of these phenolic acids. As a result, tannic and chlorogenic acid had a strong inhibition effect. On the other hand, gallic acid had a weak inhibition effect. In this study, all phenolic acids except for chlorogenic acid and p-coumaric acid showed non-competitive inhibition effects on rat kidney AR.  相似文献   

16.
Phenylacetic hopanetetrol is a Frankia specific lipid present in vesicles. Phenylacetic acid (PAA) is known as an auxinomimetic, exhibiting the same effect on plant growth as indole acetic acid (IAA). We hypothesize that PAA, only bound by an ester link to the hopanetetrol basic unit, would be easily released and could thus play a role in nodule formation. HPLC and mass spectrometry analysis allowed us to show that 2 Alnus- (ACoN24d and ACN14a) and 2 Elaeagnus-infective strains (EaI1 and EaI3) released PAA into the culture medium, at concentrations of about 10–5 to 10–6 M, whereas IAA was not detected. Furthermore, exogenous PAA added to axenically-grown Alnus glutinosa roots at a concentration of 5×10–5 M, resulted in the formation of thick, short lateral roots which resembled actinorhizal nodules. phenylalanine ammonia lyase (PAL) and chalcone syntase (CHS) induction by incompatible and compatible Frankia strains in A. glutinosa roots and the different contents in salicylic acid precursors (cinnamic acid and benzoic acid) observed between nodules and roots support the idea that PAA would be produced in nodules to the detriment of salicylic acid production. These results provide evidence that in actinorhizal root nodules, phenylpropanoid metabolism may play a multiple role in symbiotic interactions including the limitation of the induction of the systematic acquired resistance (SAR) by the plant.  相似文献   

17.
    
Introduction – Ixeris sonchifolia (Bunge) Hance, a folk medicine, has been widely used in China for its anti‐inflammatory and haemostatic effects. However, the miscellaneous component composition of this herbal medicine is not well known. Objective – To develop a fast and comprehensive analytical method for the characterisation of various components from I. Sonchifolia, as a tool for the quality control of the herb and its related preparations. Methodology – Ixeris sonchifolia samples were extracted with 60% aqueous methanol, purified by solid‐phase extraction and then analysed by the combinatorial use of HPLC‐TOFMS and HPLC‐ITMS. Results – A total of six sesquiterpene lactones, six phenolic acids and seven flavonoids were identified or tentatively characterised. Five of them were reported for the first time in I. sonchifolia and, in particular, two amino acid‐sesquiterpene lactone conjugates, 11,13‐dihydro‐13‐prolyl‐ixerin Z and 11,13‐dihydro‐13‐prolyl‐ixerin Z1, that were first found in this plant source. Conclusion – A global profile of I. sonchifolia constituents was described, which could be useful for the quality control of this herb and its related preparations. The employed combination of HPLC‐TOFMS and HPLC‐ITMS could also be a promising tool for the analysis of other herbal medicines containing sesquiterpene lactones, phenolic acids or flavonoids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
    
Long-chain 3-hydroxydicarboxylic acids (3-OHDCAs) are thought to arise via beta-oxidation of the corresponding dicarboxylic acids (DCAs), although long-chain DCAs are neither readily transported into nor beta-oxidized in mitochondria. We thus examined whether omega-hydroxylation of 3-hydroxy fatty acids (3-OHFAs), formed via incomplete mitochondrial oxidation, is a more likely pathway for 3-OHDCA production. NADPH-fortified human liver microsomes converted 3-hydroxystearate and 3-hydroxypalmitate to their omega-hydroxylated metabolites, 3,18-dihydroxystearate and 3,16-dihydroxypalmitate, respectively, as identified by GC-MS. Rates of 3,18-dihydroxystearate and 3,16-dihydroxypalmitate formation were 1.23 +/- 0.5 and 1.46 +/- 0.30 nmol product formed/min/mg protein, respectively (mean +/- SD; n = 13). Polyspecific CYP4F antibodies markedly inhibited microsomal omega-hydroxylation of 3-hydroxystearate (68%) and 3-hydroxypalmitate (99%), whereas CYP4A11 and CYP2E1 antibodies had little effect. Upon reconstitution, CYP4F11 and, to a lesser extent, CYP4F2 catalyzed omega-hydroxylation of 3-hydroxystearate, whereas CYP4F3b, CYP4F12, and CYP4A11 exhibited negligible activity. CYP4F11 was the lone CYP4F/A enzyme that effectively oxidized 3-hydroxypalmitate. Kinetic parameters of microsomal 3-hydroxystearate metabolism were K(m) = 55 microM and V(max) = 8.33 min(-1), whereas those for 3-hydroxypalmitate were K(m) = 56.4 microM and V(max) = 14.2 min(-1). CYP4F11 kinetic values resembled those of native microsomes, with K(m) = 53.5 microM and V(max) = 13.9 min(-1) for 3-hydroxystearate and K(m) = 105.8 microM and V(max) = 70.6 min(-1) for 3-hydroxypalmitate. Our data show that 3-hydroxystearate and 3-hydroxypalmitate are converted to omega-hydroxylated 3-OHDCA precursors in human liver and that CYP4F11 is the predominant catalyst of this reaction. CYP4F11-promoted omega-hydroxylation of 3-OHFAs may modulate the disposition of these compounds in pathological states in which enhanced fatty acid mobilization or impairment of mitochondrial fatty acid beta-oxidation increases circulating 3-OHFA levels.  相似文献   

19.

试验旨在探究投喂3种饲料对中华绒螯蟹生长、消化酶活性及营养与品质的影响。试验分为3个组: 冰鱼组(6月份后投喂冰鱼)、配合饲料组(6月份后投喂配合饲料)和黑水虻组(6月份后投喂黑水虻)。每组4重复, 每个重复4只。在8—10月养殖90d中, 分别于每月20日进行采样, 进行相关试验分析。结果表明, 10月时中华绒螯蟹的体重、性腺指数(GSI)、总可食用率(TEY)在3组之间没有显著差异(P>0.05), 黑水虻组的肝胰腺指数(HSI)最大。在肝胰腺消化酶活性方面, 淀粉酶(AMS)和胰蛋白酶(TRY)活性在3组之间没有显著差异(P>0.05), 而脂肪酶(LPS)活性黑水虻组最高。肝胰腺脂肪酸中, 黑水虻组的总饱和脂肪酸(∑SFA)含量最高, 冰鱼组的单不饱和脂肪酸(∑PUFA)和多不饱和脂肪酸(∑MUFA)含量最高; 性腺脂肪酸中, 配合饲料组的∑SFA、∑PUFA和∑MUFA含量最高; 肌肉脂肪酸中, 黑水虻组的∑SFA、∑PUFA和∑MUFA含量最高; 肝胰腺氨基酸中, 3组之间均无显著差异。肌肉氨基酸中, 必需氨基酸(EAA)、非必需氨基酸(NEAA)和总氨基酸含量(TEAA)都是配合饲料组最高(P>0.05), 半胱氨酸3组之间存在显著差异(P<0.05), 冰鱼组含量最高, 配合饲料组含量最低; 肝胰腺中EAA、NEAA和TEAA都是黑水虻组最高(P>0.05)。研究表明, 3种饲料对中华绒螯蟹生长没有显著影响, 而配合饲料能够提高性腺脂肪酸含量, 黑水虻幼虫能够增加肝胰腺氨基酸含量, 表明配合饲料更加利于中华绒螯蟹绿色发展。

  相似文献   

20.
    
Glucose and quinic acid esters of several hydroxybenzoic and cinnamic acids were identified in methanolic extracts of leaves of 15-day-old Sorghum bicolor together with two O-glucosides. Some of the phenolic acids were also found to occur as insoluble esters of cell wall polysaccharides. While these derivatives did not affect the feeding of Locusta migratoria on sorghum, the free acids, as a mixture, were markedly inhibitory. It was found that Sorghum contained a mixture of hydrolases which could effect the transformation of “inactive” phenolic esters and glycosides into “active” phenolic acids at a high enough concentration to significantly reduce feeding by Locusta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号