首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The purpose of these studies was to test the hypothesis that carotid chemoreceptor activity is necessary for postnatal maturation of the ventilatory control system. By using a lateral surgical access, 17 piglets were carotid body denervated (CBD) and 14 were sham denervated at 3-25 days of age. After surgery, there was no irregular breathing in any group. There was no significant hypoventilation when CBD was performed at less than 5 days of age (n = 5) and only a mild (arterial PCO(2) 5 Torr; P < 0.05) to moderate, transient (arterial PCO(2) 8 Torr; P < 0.5) hypoventilation in piglets denervated at 10-15 (n = 6) and 20-25 (n = 6) days of age, respectively. Three weeks after surgery, both breathing of a hypoxic gas mixture and jugular venous NaCN injections elicited a hyperpnea in the CBD piglets that was attenuated compared with that in sham CBD piglets. In the CBD piglets, there was no response to injections of NaCN in the carotid arteries, but there was a response to NaCN injected into the proximal descending aorta, suggesting the residual peripheral chemosensitivity was of aortic origin. Carotid chemoreceptor-intact piglets had carotid and aortic NaCN chemosensitivity by 2 days of age. The carotid response persisted for the 40 days of the study, but the aortic reflex persisted only until approximately 8 days of age. We conclude that 1) the major effect of CBD per se in neonatal piglets is age-dependent hypoventilation and 2) there is a high degree of plasticity in peripheral chemosensitivity in neonates that may contribute to minimizing the changes in breathing after CBD.  相似文献   

2.
Carotid body denervation (CBD) in neonatal goats and piglets results in minimal irregular breathing and no fatalities. Redundancy and/or plasticity of peripheral chemosensitivity and a relatively mature ventilatory control system at birth may contribute to the paucity of CBD effects in these species. In the present study, we tested the hypothesis that CBD mortality would be greater in neonates of a less mature species such as the rat. We found that the mortality in rats denervated at 2-3 and 7-8 days of age was significantly higher (P < 0.05) than in sham-CBD rats. In all surviving rats, pulmonary ventilation during hypoxia was lower in CBD than in sham operated rats 2 days after denervation. In surviving rats denervated during the 7th and 8th postnatal days, there was also reduced weight gain and pulmonary ventilation during eupnea, including apneas up to 20 s in duration. However, the effects of CBD were compensated within 3 wk after denervation. Local injections of NaCN indicated that aortic chemoreceptors might have been one of the sites of recovery of peripheral chemosensitivity. We concluded that CBD has higher mortality in newborn rats than in other mammals, possibly because of the relative immaturity of these animals at birth. Nonetheless, in survivors there was enough redundancy and plasticity in the control of breathing to eventually compensate for the consequences of CBD.  相似文献   

3.
We examined the effects of carotid body denervation (CX, n = 9), CX + aortic nerve section (CAX, n = 9), and sham surgery (SHAM, n = 7) on cardiorespiratory and metabolic function in young piglets (less than 9 days). For comparison, 1-mo-old pigs were also studied. Studies were performed 1 day after surgery, during which time ventilation (barometric plethysmography), heart rate, blood pressure, arterial blood gases, and electroencephalogram were recorded under normoxia. CX and CAX piglets hypoventilated (arterial PCO2 = 47.1 +/- 2.6 and 45.4 +/- 3.1 Torr, respectively) compared with SHAM piglets (arterial PCO2 = 36.4 +/- 1.5 Torr). CX piglets had an average of 8.0 +/- 3.0 apneas/h, lasting, on average, 26 +/- 3 s. CAX piglets averaged 17.2 +/- 7.9 apneas/h, lasting 30 +/- 5 s. Such long apneas were never observed in SHAM animals. Mean heart rate and blood pressure in denervated piglets were not significantly different from those in SHAM piglets. In animals followed up poststudy, significantly high mortality was observed in CX (5 of 9) and CAX (6 of 9) piglets by 7 days after surgery but not in SHAM animals (0 of 7) despite identical environmental and feed conditions (P less than 0.05; chi 2). One-month-old denervated animals showed periodic breathing and hypoventilation, but none died. These results suggest that in the newborn piglet 1) peripheral chemoreceptors have an active role in maintaining normal ventilation and avoidance of prolonged apnea and 2) survivability in early life is critically dependent on peripheral chemoreceptors.  相似文献   

4.
In awake lambs we investigated the role of the peripheral chemoreceptors in producing dynamic ventilatory (VE) responses to CO2. The immediate VE response, within 15 s, to transient CO2 inhalation was studied in two groups: 1) five lambs before carotid denervation and 2) the same lambs after carotid denervation. The time course of VE responses during the first 60 s after a step change to 8% inspired CO2 was also studied in lambs after carotid denervation and in a group of six carotid body-intact lambs 10-11 days of age. Acute CO2 responses were assessed using step changes to various concentrations of CO2 + air and CO2 + O2, while VE was recorded breath by breath. Intact lambs exhibited a brisk VE response to step changes in CO2, beginning after 3-5 s. Hyperoxia altered but did not suppress the dynamic VE CO2 response when the carotid chemoreceptors were intact. Carotid denervation markedly reduced the VE response during the first 25 s after a CO2 step change, revealing the time delay required for the central chemoreceptors to produce an effective VE response. The residual VE response remaining after CD was thought to be mediated by the remaining aortic body chemoreceptors and was eliminated by adding O2 to the CO2 challenges. However, after carotid denervation, even with CO2 + hyperoxia, the onset of a small tidal volume response was apparent by 10-12 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The role of the peripheral chemoreceptors in the control of fetal breathing movements has not been fully defined. To determine whether denervation of the peripheral chemoreceptors affects fetal breathing movements, we studied 14 chronically catheterized fetal sheep from 120 to 138 days of gestation. In seven fetuses the chemoreceptors were denervated by bilateral section of the vagus and carotid sinus nerves; in seven others, sham operations were performed. We compared several variables during two study periods: 0-5 and 6-13 days after operation. In the denervated fetuses there were significant decreases in the incidence and amplitude of fetal breathing movements during both study periods. There were no differences between the two groups in incidence of low-voltage electrocortical activity, arterial pH and blood gas tensions, fetal heart rate, mean arterial blood pressure, or duration of survival after operation or birth weight. We conclude that denervation of the peripheral chemoreceptors decreases fetal breathing movements. These results indicate that the peripheral chemoreceptors are active during fetal life and participate in the control of fetal breathing movements.  相似文献   

6.
The essential role of carotid body chemoreceptors in sleep apnea   总被引:4,自引:0,他引:4  
Sleep apnea is attributable, in part, to an unstable ventilatory control system and specifically to a narrowed "CO2 reserve" (i.e., the difference in P(a)CO2 between eupnea and the apneic threshold). Findings from sleeping animal preparations with denervated carotid chemoreceptors or vascularly isolated, perfused carotid chemoreceptors demonstrate the critical importance of peripheral chemoreceptors to the ventilatory responses to dynamic changes in P(a)CO2. Specifically, (i) carotid body denervation prevented the apnea and periodic breathing that normally follow transient ventilatory overshoots; (ii) the CO2 reserve for peripheral chemoreceptors was about one half that for brain chemoreceptors; and (iii) hypocapnia isolated to the carotid chemoreceptors caused hypoventilation that persisted over time despite a concomitant, progressive brain respiratory acidosis. Observations in both humans and animals are cited to demonstrate the marked plasticity of the CO2 reserve and, therefore, the propensity for apneas and periodic breathing, in response to changing background ventilatory stimuli.  相似文献   

7.
In seven anesthetized cats central chemosensitivity was eliminated (cold block) and peripheral chemoreceptors were either stimulated or eliminated (sectioned) to test whether nonchemical vagal afferents can maintain rhythmic ventilation and to determine the relative contribution of the carotid and aortic chemoreceptors to ventilatory drive without central chemosensitivity. Elimination of all chemical afferents invariably induced apnea, whereas ventilation was reduced from 533 to 159 ml X min-1 during cold block of central chemosensitivity and to 478 ml X min-1 after sectioning both sinus nerves. Cold block with only the aortic chemoreceptors and vagal afferents intact produced apnea in four of six cases tested. Stimulation of peripheral chemoreceptors during cold block remained effective and interrupted apnea in three of the four cats with only aortic chemoreceptors intact. We conclude that the nonchemical vagal respiratory afferents alone are unable to maintain rhythmic ventilation. Respiratory rhythm generation is, under the conditions of our experiments, critically dependent on sufficient afferent input from chemical afferents. Of these, central chemosensitivity plays the major role, followed by carotid body and, least importantly, by aortic afferents.  相似文献   

8.
To assess the ventilatory responses elicited by changes of tissue hypoxia, sodium cyanide (0.12 mg/kg-min for 10 min) was infused into the upper abdominal aorta of anesthetized dogs. These infusions produced decreases in oxygen consumption, increases in arterial lactate concentration, and increases in arterial lactate/pyruvate ratio. Coincident with these metabolic changes of hypoxia, minute ventilation (VE) increased 228 +/- SE 36% and arterial PCO2 decreased 21 +/- SE 2 mmHg; therefore, pH increased both in arterial blood in and cisternal cerebrospinal fluid. Following infusion of cyanide into the abdominal aorta, small quantities of cyanide (48 +/- SE 14 mumol/liter) appeared in carotid arterial blood. To evaluate the possibility that the observed increases in VE were due to stimulation of peripheral arterial chemoreceptors by the recirculating cyanide, the carotid and aortic chemoreceptors were denervated in four dogs. Nonetheless, after intra-aortic infusion of sodium cyanide (1.2 mg/kg), ventilation in these chemodenervated animals again increased considerably (154 +/- SE 36%). In order to explore the possibility that cyanide infusion can stimulate ventilation by an extracranial mechanism, heads of vagotomized dogs (including the carotid bodies) were perfused entirely by donor dogs. The intra-aortic infusion of sodium cyanide (0.9 mg/kg) into these head-perfused animals still caused large increases in VE (163 +/- SE 19%). It is concluded that intra-aortic cyanide infusions stimulate VE by an extracranial mechanism other than the carotid and aortic chemoreceptors.  相似文献   

9.
The objective of the present study was to determine in goats whether carotid body denervation (CBD) at 1-3 days of age causes permanent changes in breathing greater than those that occur after CBD in adult goats. Goats underwent CBD (n = 6) or sham CBD (n = 3) surgery at 1-3 days of age. In addition, one unoperated control animal was studied. Bolus intravenous injections of NaCN 2 days postsurgery verified successful CBD surgery. However, at 3, 11, and 18 mo of age, the CBD goats had regained a NaCN response that did not differ (P > 0.10) from that of intact goats. Intracarotid NaCN injections elicited a hyperpnea in the sham CBD but not the CBD goats. Only one animal exhibited highly irregular breathing [characterized by prolonged (>9-s) apneas] after CBD, and the irregularity disappeared by 3 mo of age. One CBD goat died at 35 days of age, and autopsy revealed that death was associated with pneumonia. After 3 mo of age, there were no statistically significant differences (P > 0.10) between sham and CBD goats in eupneic breathing, hypoxia and CO(2) sensitivity, and the exercise hyperpnea. It is, therefore, concluded that CBD at 1-3 days of age in goats does not appear to affect selected aspects of respiratory control after 3 mo of age, conceivably because of the emergence of other functional chemoreceptors that compensate for the loss of the carotid chemoreceptor.  相似文献   

10.
Changes in local brain stem perfusion that alter extracellular fluid Pco2 and/or [H+] near central chemoreceptors may contribute to the decrease in respiration observed during hypoxia after peripheral chemoreceptor denervation and to the delayed decrease observed during hypoxia in the newborn. In this study, we measured the changes in respiration and brain stem blood flow (BBF) during 2-4 min of hypoxic hypoxia in both intact and denervated piglets and calculated the changes in brain stem Pco2 and [H+] that would be expected to occur as a result of the changes in BBF. All animals were anesthetized, spontaneously breathing, and between 2 and 7 days of age. Respiratory and other variables were measured before and during hypoxia in all animals, and BBF (microspheres) was measured in a subgroup of intact and denervated animals at 0, 30, and 260 s and at 0 and 80 s, respectively. During hypoxia, minute ventilation increased and then decreased (biphasic response) in the intact animals but decreased only in the denervated animals. BBF increased in a near linear fashion, and calculated brain stem extracellular fluid Pco2 and [H+] decreased over the first 80 s both before and after denervation. We speculate that a rapid increase in BBF during acute hypoxia decreases brain stem extracellular fluid Pco2 and [H+], which, in turn, negatively modulate the increase in respiratory drive produced by peripheral chemoreceptor input to the central respiratory generator.  相似文献   

11.
The relationship between fetal femoral arterial P02 and PC02 was evalulated in 13 fetal sheep with intact and denervated peripheral chemoreceptors. With intact chemoreceptors, a significant relationship was found between fetal Pa02 and PaC02 at the time of the first breath (Pa02 = 2.57 + 0.09 PaC02; r = 0.62, P less than 0.05)mfollowing bilateral carotid sinus nerve section (CSN) or total peripheral chemodenervation (TD), PaC02. Comparison of the intact, CSN, and TD blood gases at the time of the first breath demonstrated that a) severe hypoxemia stimulates fetal respiration even following total peripheral chemodenervation; b) fetal central chemoreceptors do not respond to PaC02; c) PaC02 acting via peripheral chemoreceptors has a minor modulating effect on the degree of hypoxemia required to initiate fetal respiration. At a PaC02 below 40 mmHg this effect is inhibitory, acting via the carotid body. At a PaC02 above 90 mmHg this effect is stimulatory, acting via both carotid and aortic bodies.  相似文献   

12.
We examined the role of the carotid chemoreceptors in the ventilatory response to changes in venous CO2 load in 12 awake sheep using a venovenous extracorporeal perfusion circuit and two carbon dioxide membrane lungs (CDML). Three of the sheep had undergone surgical denervation of the carotid bodies (CBD). In the nine intact sheep, as CO2 was removed from or added to the peripheral venous blood through the CDML under normoxic conditions, there was a linear relationship between the rate of pulmonary CO2 excretion (VCO2) and the resulting rate of ventilation over a VCO2 range of 0--800% of control, so that arterial PCO2 remained close to isocapnic. In contrast, in the three CBD sheep, the ventilatory response to changes in VCO2 was significantly decreased under normoxic conditions, resulting in marked hypercapnia. The results indicate that the carotid chemoreceptors exert a major influence on the ventilatory response to changes in venous CO2 load.  相似文献   

13.
We measured the reflex respiratory response to a 2-breath alternation in fractional inspired oxygen in two groups of lambs. Test runs where F(I),O2 was made to alternate (between 0.21 and 0.14) were compared with control runs in which it was held at 0.21. Within 36 h of birth we cut the carotid sinus nerves bilaterally in one group of lambs (n = 5) whilst in a second group (n = 5) sham operations were carried out. The alternating responses in seven respiratory variables were compared between test and control runs in each group of lambs at postnatal days 5-6 and again at postnatal days 10-11. In sham-operated lambs at days 5-6 there was a significant response in most respiratory variables during test runs and by days 10-11 the response was increased, primarily as a consequence of an increase in the tidal volume component of the response, indicating a postnatal maturation of the responses. The time-scale of this maturation is appropriate to that of peripheral chemoreceptor resetting. There was no significant response to the test in the denervated lambs at 5-6 days but by days 10-11 a small response was measured in some variables. Our results therefore indicate that the reflex respiratory response to alternations in FI,O2 is primarily mediated by the carotid chemoreceptors. The development of a response mediated by the aortic chemoreceptors may account for the small alternating response in the denervated lambs at days 10-11.  相似文献   

14.
We have described a rat model that responds to repetitive episodic hypoxia (12-s infusions of nitrogen into daytime sleeping chambers every 30 s, 7 h/day for 35 days) with an increase in diurnal systemic blood pressure. We hypothesized that afferent information from the peripheral chemoreceptors may be necessary to produce diurnal blood pressure elevation in this hypoxia model. Carotid body denervation (CBD) was accomplished by severing both carotid sinus nerves in two groups of male Wistar rats (250-375 g). Group 4 CBD rats were subjected to intermittent hypoxia for 35 days (3-5% nadir ambient O2) as described above, whereas group 5 CBD rats remained unhandled in their usual cages. Additional sham-operated controls included group 2 sham-"hypoxia" rats, which were housed in chambers identical to the hypoxia rats but supplied with compressed air instead of nitrogen, group 1 (not denervated) rats, which remained unhandled in their usual cages, and group 3 sham-operated rats, which were subjected to 35 days of intermittent hypoxia identical to group 4 CBD rats. Femoral arterial baseline and end-of-study blood pressures were measured in conscious rats. The group 3 rats exposed to episodic hypoxia displayed a 13-mmHg increase in mean blood pressure, whereas the other groups showed no significant change from baseline. Left ventricular hypertrophy was evident in all rats exposed to episodic hypoxia, but right ventricular hypertrophy was evident only in the group 4 rats. All CBD rats developed increased hematocrit and hemoglobin, while the group 3 rats (non-CBD, episodic hypoxia) did not. The baroreceptor reflex at baseline was not depressed in the CBD rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Recent studies indicate that renal sympathetic nerve activity is chronically suppressed during ANG II hypertension. To determine whether cardiopulmonary reflexes and/or arterial baroreflexes mediate this chronic renal sympathoinhibition, experiments were conducted in conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. Dogs were studied 1) intact, 2) after thoracic vagal stripping to eliminate afferents from cardiopulmonary and aortic receptors [cardiopulmonary denervation (CPD)], and 3) after subsequent denervation of the carotid sinuses to achieve CPD plus complete sinoaortic denervation (CPD + SAD). After control measurements, ANG II was infused for 5 days at a rate of 5 ng. kg(-1). min(-1). In the intact state, 24-h control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 98 +/- 4 mmHg and 1.04 +/- 0.04, respectively. ANG II caused sodium retention and a sustained increase in MAP of 30-35 mmHg. Throughout ANG II infusion, there was a greater rate of sodium excretion from Inn vs. Den kidneys (day 5 Den/Inn sodium = 0.51 +/- 0.05), indicating chronic suppression of renal sympathetic nerve activity. CPD and CPD + SAD had little or no influence on baseline values for either MAP or the Den/Inn sodium, nor did they alter the severity of ANG II hypertension. However, CPD totally abolished the fall in the Den/Inn sodium in response to ANG II. Furthermore, after CPD + SAD, there was a lower, rather than a higher, rate of sodium excretion from Inn vs. Den kidneys during ANG II infusion (day 5 Den/Inn sodium = 2.02 +/- 0.14). These data suggest that cardiac and/or arterial baroreflexes chronically inhibit renal sympathetic nerve activity during ANG II hypertension and that in the absence of these reflexes, ANG II has sustained renal sympathoexcitatory effects.  相似文献   

16.
In this study we have evaluated the role of the peripheral chemoreceptors in the ventilatory response to caffeine at a dose currently used in human infants for treatment of central apneas (10 mg/kg). Twelve lambs were studied; six had carotid body denervation (CBD) and six had a sham denervation (intact). The denervation was done the 2nd wk of life, and the study of the response to caffeine infusion was carried out at a mean age of 82 days. The awake and nonsedated animals received 10 mg/kg of caffeine, and caffeine blood levels were, respectively, 8.8 and 9.0 mg/l in the intact and in the CBD lambs. The intact lambs responded to caffeine by a significant immediate increase in minute ventilation (VE) of 46% from 274 to 400 ml X min-1 X kg-1 (P less than 0.001), 1 min after caffeine infusion. This response rapidly faded, but VE was still increased at 2 h, 314 ml X min-1 X kg-1. The increase in ventilation was brought about by a change in mean inspiratory flow (VT/TI), which increased from 9.9 to 14.0 ml X s-1 X kg-1 within 1 min (P less than 0.01); VT/TI was still increased at 11.2 ml X s-1 X kg-1 2 h later. In contrast, for the CBD lambs there was no response to caffeine infusion as measured by VE or VT/TI. We conclude that bolus caffeine infusion produces a rapid response in VE followed by a fall in VE that remained above base line until at least 2 h postinfusion, and the intact chemoreceptor function appears as an essential mediator for these increases in ventilation, since the peripheral chemodenervation has completely abolished the VE response to this particular dose of caffeine.  相似文献   

17.
Increases in brain stem blood flow (BBF) during hypoxia may decrease tissue PCO2/[H+], causing minute ventilation (VE) to decrease. To determine whether an increase in BBF, isolated from changes in arterial PO2 and PCO2, can affect respiration, we obstructed the thoracic aorta with a balloon in 31 intact and 24 peripherally chemobarodenervated, anesthetized, spontaneously breathing newborn piglets. Continuous measurements of cardiorespiratory variables were made before and during 2 min of aortic obstruction. Radiolabeled microspheres were used to measure BBF before and approximately 30 s after balloon inflation in eight intact and five denervated animals. After balloon inflation, there was a rapid increase in mean blood pressure in both the intact and denervated animals, followed within 10 s by a decrease in tidal volume and VE. In the intact animals, the decrease in VE after acute hypertension can be ascribed to a baroreceptor-mediated reflex. After peripheral chemobarodenervation, however, acute hypertension continued to produce a decrease in VE, which cannot be explained by baroreceptor stimulation. In these denervated animals, aortic balloon inflation was associated with an increase in BBF (13.1 +/- 2.7%; P less than 0.05). We speculate that the increase in BBF during hypoxia may contribute to the decrease in ventilation observed after carotid body denervation.  相似文献   

18.
To explore the role of arterial chemoreceptors, the effect of hypobaric hypoxia on urinary sodium excretion and systolic blood pressure was investigated in conscious spontaneously hypertensive rats (SHR) with carotid body denervation (CBD) or after sham-operation (SO). Denervation of the carotid bodies was performed by section of the carotid sinus nerves. Exposure to hypobaric hypoxia equivalent to high altitude of 4000 m led to a more pronounced decrease in systolic blood pressure in CBD-rats than in SO-rats. The pattern of urinary sodium excretion observed on the first two days of hypoxia in both groups was not affected by the chemodenervation. It is being suggested that arterial chemoreceptors do not play a critical role in blood pressure and natriuretic responses to hypobaric hypoxia in conscious SHR.  相似文献   

19.
We have previously observed that the guinea-pig appears to have a relatively poor ventilatory (V (E)) response to hypoxia, compared to other mammals. Therefore, in this study, we questioned the ability of the carotid bodies (primary peripheral chemoreceptors) in the guinea-pig to detect hypoxia. The ventilatory responses to poikilocapnic hypoxia (8% O(2)), poikilooxic hypercapnia (8% CO(2)), hyperoxia (100% O(2)) and cyanide (NaCN - 200 mug/kg, i.v.) were assessed before and after carotid body denervation (CBD) in anaesthetized guinea-pigs. Although CBD attenuated the V (E) responses to hypercapnia and cyanide, it had no effect on normoxic breathing or the V (E) responses to hypoxia or hyperoxia. In a separate group of guinea-pigs, nerve activity was recorded from single or few-fibre preparations of the carotid sinus nerve (CSN). Basal chemoreceptor activity could not be detected from any of the nerve preparations. NaCN and hypercapnia consistently provoked an increase in neural activity. In contrast, hypoxia never clearly increased activity in any of the single or few-fibre preparations isolated from the CSN. In conclusion, although the carotid bodies of the guinea-pig, like those of other mammals, are able to detect hypercapnia and histotoxic hypoxia and elicit a reflex increase in V (E), they are essentially hypoxia-insensitive. The latter may explain, at least in part, the relatively poor V (E) response to hypoxia shown by the guinea-pig.  相似文献   

20.
The present study was designed to provide further insight into the role of the carotid and aortic chemoreceptors in ventilatory (VE) acclimatization during sojourn at altitude. Measurements were made: 1) on 10 ponies near sea level (SL, 740 Torr) under normal conditions, 2) on 6 of these at SL following chemoreceptor denervation (CD), and 3) subsequently on all 10 during 4 days of hypobaric hypoxia (PaO2 = 40-47 Torr). CD resulteo in hypoventilation at SL (deltaPaCO2 = d8 Torr, P less than 0.05), and it prevented hyperventilation normally observed with injection of NaCN and acute exposure to hypoxia (less than 1 h). In contrast, hyperventilation was evident in normal ponies during acute hypoxia (deltaPaCO2 = -6.7 Torr). Ventilation increased in both groups between the 2nd and 8th h of hypoxia (deltaPaCO2 from 1 h = -4 Torr, P less than 0.05). This change, a common characteristic of acclimatization, persisted throughout 4 days of hypoxia in the normal ponies. However, in the CD ponies this change was evident consistently only through the 12th h and after the 44 h hyperventilation was no longer evident. We conclude that the peripheral chemoreceptors are essential in ponies for normal VE acclimatization to this degree of hypoxemia. Two additional findings in CD ponies suggest the presence of a CNS inhibitory influence on the VE control center during chronic hypoxemia. First, acute hyperoxygenation on the 4th day of hypoxemia induced hyperventilation (deltaPaCO2 = -5 Torr, P less than 0.05). Second, again on the 4th day and during hyperoxygenation, VE responsiveness to CO2 and doxapram HCl was greater than at sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号