首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To assess the short-term consequences of carbohydrate or fat overfeeding or of food restriction on the metabolic effects of mental stress in healthy lean women. Research Methods and Procedures: The effects of a sympathetic activation elicited by mental stress were evaluated in a group of healthy women after standardized isocaloric feeding (ISO) or after a 3-day overfeeding with 40% excess calories as either carbohydrate overfeeding (CHO OF) or fat overfeeding (FAT OF). Oxygen consumption rate (VO 2) was measured as an index of energy expenditure, and subcutaneous glycerol concentrations were monitored with microdialysis. The same measurements were performed in another group of healthy women after ISO and after a 3-day period of underfeeding with a protein sparing modified fast (UF). Results: In all conditions, mental stress significantly increased heart rate, blood pressure, plasma norepinephrine and epinephrine concentrations, and VO 2, and produced a nonsignificant increase in subcutaneous glycerol concentrations. CHO OF and FAT OF did not alter the effects of mental stress on VO 2 and subcutaneous glycerol concentrations. In contrast, UF increased basal VO 2 but significantly reduced its stimulation by mental stress. UF also enhanced the increase in subcutaneous glycerol concentrations during mental stress. Discussion: UF reduces the stimulation of energy expenditure and enhances lipolysis during sympathetic activation. These adaptations may be involved in mobilization of endogenous fat while limiting weight loss. In contrast, short-term overfeeding fails to alter the sympathetic control of energy expenditure and lipolysis.  相似文献   

2.
Adrenergic control of lipolysis and metabolic responses in obesity   总被引:2,自引:0,他引:2  
Adrenergic modulation of lipolysis was determined in obese and lean women. Epinephrine was infused alone, or in combination with propranolol, or with phentolamine. In both obese and lean subjects slight alpha- and prevalent beta-adrenergic lipolytic responsiveness was observed. alpha-adrenergic blockade by yohimbine potentiated lipolysis and exercise energy expenditure. Yohimbine application during the slimming treatment increased weight loss without side effects.  相似文献   

3.
A study of exercise performance was carried out in 17 obese girls and young adults. During submaximal steady-state bicycle exercise oxygen intake (Vo2) for a given work output (W) was raised in obese subjects but minute ventilation at a fixed carbon dioxide output, gas exchange, blood gases, and cardiac output at a given VO2 were similar to the values previously found for normals. In obese subjects high levels of VO2 for fixed W were also obtained on the treadmill but when these were standardized for body weight (unlike the bicycle test) it was shown that the obese girls and women exercised within the normal (expected) range of aerobic energy expenditure. During maximal performance the absolute VO2 max was the same in obese and nonobese subjects but for a given body weight, lean body mass, and leg muscle (plus) bone volume, VO2max was reduced by 23.8, 16.3, and 24.5% respectively, in the former group. It was concluded that obesity though having minimal affect on responses to submaximal exercise is nevertheless associated with a marked reduction in physiological performance at or near maximal effort.  相似文献   

4.
Objective: We tested the hypothesis that muscle sympathetic nerve activity (MSNA) and forearm vascular resistance (FVR) would be augmented during mental stress or cold pressor test in healthy obese individuals compared with healthy lean individuals. Research Methods and Procedures: Twenty‐nine healthy obese women and 12 age‐matched healthy lean women were involved in the study. MSNA was directly measured from the peroneal nerve using microneurography. Forearm blood flow was measured by venous occlusion plethysmography. Blood pressure (BP) was monitored noninvasively by an automatic BP cuff, and heart rate (HR) was measured by electrocardiogram. Stroop color word test was performed for 4 minutes, and the cold pressor test was performed for 2 minutes. Results: Baseline MSNA and FVR were greater in the obese group than in the lean group. BP and HR were similar between groups. During mental stress, MSNA and FVR were greater in obese individuals than in lean individuals, although the magnitude of response was similar between groups. BP and HR similarly increased in obese and lean individuals. During the cold pressor test, MSNA, FVR, and BP were greater in obese individuals, but the magnitude of response was similar between groups. HR increased similarly during the cold pressor test in both obese and lean individuals. Discussion: Obesity increases MSNA and FVR during mental stress and the cold pressor test. This inappropriate neurovascular control can be expected to have an adverse effect on the risk factors for cardiovascular events and, hence, should be considered in the treatment of obese patients.  相似文献   

5.
To clarify the impact of vigorous physical training on in vivo insulin action and glucose metabolism independent of the intervening effects of concomitant changes in body weight and composition and residual effects of an acute exercise session, 10 lean, 10 obese, and 6 diet-controlled type II diabetic men trained for 12 wk on a cycle ergometer 4 h/wk at approximately 70% of maximal O2 uptake (VO2max) while body composition and weight were maintained by refeeding the energy expended in each training session. Before and 4-5 days after the last training session, euglycemic hyperinsulinemic (40 mU.m2.min-1) clamps were performed at a plasma glucose of 90 mg/dl, combined with indirect calorimetry. Total insulin-stimulated glucose disposal (M) was corrected for residual hepatic glucose output. Body weight, fat, and fat-free mass (FFM) did not change with training, but cardiorespiratory fitness increased by 27% in all groups. Before and after training, M was lower for the obese (5.33 +/- 0.39 mg.kg FFM-1.min-1 pretraining; 5.33 +/- 0.46 posttraining) than for the lean men (9.07 +/- 0.49 and 8.91 +/- 0.60 mg.kg FFM-1.min-1 for pretraining and posttraining, respectively) and lower for the diabetic (3.86 +/- 0.44 and 3.49 +/- 0.21) than for the obese men (P less than 0.001). Insulin sensitivity was not significantly altered by training in any group, but basal hepatic glucose production was reduced by 22% in the diabetic men. Thus, when intervening effects of the last exercise bout or body composition changes were controlled, exercise training per se leading to increased cardiorespiratory fitness had no independent impact on insulin action and did not improve the insulin resistance in obese or diabetic men.  相似文献   

6.
Seventeen women were divided into lean (19.5 +/- 0.5 years; 22.2 +/- 0.6 kg.m(-2)) and obese (20.4 +/- 0.5 years; 34.9 +/- 2.1 kg.m(-2)) groups. On completion of a submax cycle ergometer test and 10-repetition maximum (10RM) of 5 exercises on a Smith machine, subjects returned for 2 exercise sessions during menses. Session 1 consisted of performing 3 sets of 10 repetitions at 70% of the predetermined 10RM for the following exercises: squat, calf raises, bench press, upright row, and shoulder press. Session 2 consisted of cycling at 60-65% VO2max for a duration that would expend the same number of calories as the resistance session. Postexercise respiratory exchange ratio and EPOC magnitude/duration were similar for both groups. These findings indicate that women who are lean or obese will respond similarly to exercise at similar relative intensities and that aerobic and resistance exercise of equal caloric expenditure will elicit similar EPOC responses.  相似文献   

7.
The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P < 0.001). After the 12- but not the 48-h fast, insulin-stimulated AKT Ser(473) phosphorylation was greater in lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.  相似文献   

8.
Our primary objective was to evaluate changes in energy expenditure and body composition in women with normal glucose tolerance (NGT) and gestational diabetes mellitus (GDM). A secondary objective was to examine the relationship between maternal leptin and nutrient metabolism. Fifteen obese women, eight with NGT and seven with GDM, were evaluated before conception (P), at 12-14 wk (E), and at 34-36 wk (L). Energy expenditure and glucose and fat metabolism were measured using indirect calorimetry. Basal hepatic glucose production was measured using [6,6-2H2]glucose and insulin sensitivity by euglycemic clamp. There was a significant increase (6.6 kg, P = 0.0001) in fat mass from P to L. There was a 30% (P = 0.0001) increase in basal O2 consumption (VO2, ml/min). There were no significant changes in carbohydrate oxidation during fasting or storage from P to L. There was, however, a significant (P = 0.0001) 150% increase in basal fat oxidation (mg/min) from P to L. Under hyperinsulinemic conditions, there were similar 25% increases in VO2 (P = 0.0001) from P to L in both groups. Because of the significant increases in insulin resistance from P to L, there was a significant (P = 0.0001) decrease in carbohydrate oxidation and storage. There was a net change from lipogenesis to lipolysis, i.e., fat oxidation (30-40 mg/min, P = 0.0001) from P to L. Serum leptin concentrations had a significant positive correlation with fat oxidation at E (r = 0.76, P = 0.005) and L (r = 0.72, P = 0.009). Pregnancy in obese women is associated with significant increases in fat mass and basal metabolic rate and an increased reliance on lipids both in the basal state and during the clamp. These modifications are similar in women with NGT and GDM. The increased reliance on fat metabolism is accompanied by a concomitant decrease in carbohydrate metabolism during hyperinsulinemia. The increase in fat oxidation may be related to increased maternal serum leptin.  相似文献   

9.
Our objectives were to quantitate insulin-stimulated inward glucose transport and glucose phosphorylation in forearm muscle in lean and obese nondiabetic subjects, in lean and obese type 2 diabetic (T2DM) subjects, and in normal glucose-tolerant, insulin-resistant offspring of two T2DM parents. Subjects received a euglycemic insulin (40 mU.m(-2).min(-1)) clamp with brachial artery/deep forearm vein catheterization. After 120 min of hyperinsulinemia, a bolus of d-mannitol/3-O-methyl-d-[(14)C]glucose/d-[3-(3)H]glucose (triple-tracer technique) was given into brachial artery and deep vein samples obtained every 12-30 s for 15 min. Insulin-stimulated forearm glucose uptake (FGU) and whole body glucose metabolism (M) were reduced by 40-50% in obese nondiabetic, lean T2DM, and obese T2DM subjects (all P < 0.01); in offspring, the reduction in FGU and M was approximately 30% (P < 0.05). Inward glucose transport and glucose phosphorylation were decreased by approximately 40-50% (P < 0.01) in obese nondiabetic and T2DM groups and closely paralleled the decrease in FGU. The intracellular glucose concentration in the space accessible to glucose was significantly greater in obese nondiabetic, lean T2DM, obese T2DM, and offspring compared with lean controls. We conclude that 1) obese nondiabetic, lean T2DM, and offspring manifest moderate-to-severe muscle insulin resistance (FGU and M) and decreased insulin-stimulated glucose transport and glucose phosphorylation in forearm muscle; these defects in insulin action are not further reduced by the combination of obesity plus T2DM; and 2) the increase in intracelullar glucose concentration under hyperinsulinemic euglycemic conditions in obese and T2DM groups suggests that the defect in glucose phosphorylation exceeds the defect in glucose transport.  相似文献   

10.
The obesity is a result of energy imbalance and the increase in thermogenesis seems an interesting alternative for the treatment of this disease. The mechanism of energy expenditure through thermogenesis is tightly articulated in the hypothalamus by leptin. The hypothalamic extracellular signal-regulated kinase-1/2 (ERK1/2) is a key mediator of the thermoregulatory effect of leptin and mediates the sympathetic signal to the brown adipose tissue (BAT). In this context, physical exercise is one of the main interventions for the treatment of obesity. Thus, this study aimed to verify the effects of acute physical exercise on leptin-induced hypothalamic ERK1/2 phosphorylation and thermogenesis in obese mice. Here we showed that acute physical exercise reduced the fasting glucose of obese mice and increased leptin-induced hypothalamic p-ERK1/2 and uncoupling protein 1 (UCP1) content in BAT ( P < 0.05). These molecular changes are accompanied by an increased oxygen uptake (VO 2) and heat production in obese exercised mice ( P < 0.05). The increased energy expenditure in the obese exercised animals occurred independently of changes in spontaneous activity. Thus, this is the first study demonstrating that acute physical exercise can increase leptin-induced hypothalamic ERK1/2 phosphorylation and energy expenditure of obese mice.  相似文献   

11.
Our aim was to measure whole body energy expenditure after a mixed liquid meal, with and without simultaneous propranolol infusion, in patients with cirrhosis. We also wanted to investigate the effect of propranolol on substrate fluxes and oxygen uptake in the tissues drained by the hepatic vein and azygos vein in the postprandial period in these patients. Whole-body oxygen uptake, hepatic blood flow, hepatic venous pressure gradient and net-hepatic fluxes of oxygen, lactate, glucose, glycerol, and free fatty acids (FFA) were measured in 12 patients with alcoholic cirrhosis before and for 2 h after ingestion of a mixed liquid meal (700 kcal). Half of the patients (n = 6) were randomized to a treatment group receiving intravenous infusion of propranolol in combination with the meal. The meal-induced energy expenditure was significantly lower in patients given propranolol [15.0 +/- 18.9 vs. 67.0 +/- 26.1 kJ/120 min (means +/- SD), P < 0.01]. Meal-induced whole body oxygen uptake was lower in patients receiving propranolol (19.2 +/- 38 vs. 135.7 +/- 61 mmol/120 min, P < 0.01), and the meal-induced increase in splanchnic oxygen uptake was nonexistent when propranolol was administered in combination (-13.2 +/- 34.8 vs. 110.4 +/- 34.8 mmol/120 min, P = 0.04). Postprandially, the propranolol group had a tendency toward a reduced splanchnic glucose output, and the FFA uptake was significantly reduced. Propranolol reduces meal-induced whole body oxygen uptake and energy expenditure as well as splanchnic oxygen uptake. The splanchnic reduction in oxygen consumption can explain almost the entire reduction in whole body oxygen consumption.  相似文献   

12.
Obese pregnant women develop severe insulin resistance and enhanced systemic and placental inflammation, suggesting associated modifications of endocrine and immune functions. Activation of innate immunity by endotoxins/lipopolysaccharides (LPS) has been proposed as a mechanism for enhancing metabolic alterations in disorders with insulin resistance. The aim of this study was to characterize the immune responses developed by the adipose tissue (AT) and their potential links to maternal endotoxemia in pregnancy with obesity. Blood and subcutaneous abdominal AT were obtained from 120 lean and obese women (term pregnancy) recruited at delivery. Gene expression was assessed in AT and stromal vascular cells isolated from a subset of 24 subjects from the same cohort. Doubling of plasma endotoxin concentrations indicated subclinical endotoxemia in obese compared with lean women. This was associated with significant increase in systemic C-reactive protein and interleukin-6 (IL-6) but not tumor necrosis factor-α (TNF-α) concentrations. AT inflammation was characterized by accumulation of CD68(+) macrophages with a threefold increased gene expression of the macrophage markers CD68, EMR1, and CD14. Gene expression for cytokines IL-6, TNF-α, IL-8, and monocyte chemotactic protein-1 (MCP1) and for LPS-sensing CD14, toll-like receptor 4 (TLR4), translocating chain-associated membrane protein 2 was 2.5-5-fold higher in stromal cells of obese compared to lean. LPS-treated cultured stromal cells of obese women expressed a 5-16-fold stimulation of the same cytokines upregulated in vivo. Our data demonstrate that subclinical endotoxemia is associated with systemic and AT inflammation in obese pregnant women. Recognition of bacterial pathogens may contribute to the combined dysfunction of innate immunity and the metabolic systems in AT.  相似文献   

13.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

14.
Objective: In healthy lean individuals, changes in insulin sensitivity occurring as a consequence of a 2‐day dexamethasone administration are compensated for by changes in insulin secretion, allowing glucose homeostasis to be maintained. This study evaluated the changes in glucose metabolism and insulin secretion induced by short‐term dexamethasone administration in obese women. Research Methods and Procedures: Eleven obese women with normal glucose tolerance were studied on two occasions, without and after 2 days of low‐dose dexamethasone administration. A two‐step hyperglycemic clamp (7.5 and 10 mM glucose) with 6, 6 2H2 glucose was used to assess insulin secretion and whole body glucose metabolism. Results were compared with those obtained in a group of eight lean women. Results: Without dexamethasone, obese women had higher plasma insulin concentrations in the fasting state, during the first phase of insulin secretion, and at the two hyperglycemic plateaus. However, they had normal whole body glucose metabolism compared with lean women, indicating adequate compensation. After dexamethasone, obese women had a 66% to 92% increase in plasma insulin concentrations but a 15.4% decrease in whole body glucose disposal. This contrasted with lean women, who had a 91% to 113% increase in plasma insulin concentrations, with no change in whole body glucose disposal. Discussion: Dexamethasone administration led to a significant reduction in whole body glucose disposal at fixed glycemia in obese but not lean women. This indicates that obese women are unable to increase their insulin secretion appropriately.  相似文献   

15.
Objective: A low resting metabolic rate (RMR) is considered a risk factor for weight gain and obesity; however, due to the greater fat‐free mass (FFM) found in obesity, detecting an impairment in RMR is difficult. The purposes of this study were to determine the RMR in lean and obese women controlling for FFM and investigate activity energy expenditure (AEE) and daily activity patterns in the two groups. Methods and Procedures: Twenty healthy, non‐smoking, pre‐menopausal women (10 lean and 10 obese) participated in this 14‐day observational study on free‐living energy balance. RMR was measured by indirect calorimetry; AEE and total energy expenditure (TEE) were calculated using doubly labeled water (DLW), and activity patterns were investigated using monitors. Body composition including FFM and fat mass (FM) was measured by dual energy X‐ray absorptiometry (DXA). Results: RMR was similar in the obese vs. lean women (1601 ± 109 vs. 1505 ± 109 kcal/day, respectively, P = 0.12, adjusting for FFM and FM). Obese women sat 2.5 h more each day (12.7 ± 3.2 h vs. 10.1 ± 2.0 h, P < 0.05), stood 2 h less (2.7 ± 1.0 h vs. 4.7 ± 2.2 h, P = 0.02) and spent half as much time in activity than lean women (2.6 ± 1.5 h vs. 5.4 ± 1.9 h, P = 0.002). Discussion: RMR was not lower in the obese women; however, they were more sedentary and expended less energy in activity than the lean women. If the obese women adopted the activity patterns of the lean women, including a modification of posture allocation, an additional 300 kcal could be expended every day.  相似文献   

16.
Objective: To determine if overweight and obese women provide more accurate reports of their energy intake by 1) in‐person recall with an obese interviewer, 2) in‐person recall with a lean interviewer, or 3) telephone recall with an unknown interviewer. Research Methods and Procedures: Eighty‐eight overweight and obese women participated in this study. Subjects completed one telephone‐administered multiple‐pass 24‐hour recall (MP24R) with an unknown interviewer and were then randomly assigned to an in‐person MP24R with either a lean or obese interviewer to gather reported energy intake (rEI). Basal metabolic rate (BMR) was measured using a Deltrac monitor, and physical activity (EEPA) was estimated using a Caltrac accelerometer. Therefore, estimated energy expenditure was determined by: estTEE = (BMR + EEPA) × 1.10. Results: No significant differences were found between the two in‐person interview modes for subject age, weight, body mass index, percentage of body fat, total energy expenditure, rEI, and misreporting of energy intake. In‐person recall data were combined for comparison with the telephone recalls. No significant difference was found between the in‐person and telephone recalls for rEI and misreporting. Mean reported energy intake was significantly lower than estimated total energy expenditure for the telephone recalls and combined (lean and obese modes) in‐person recalls. Conclusions: This study found that interviewer body mass index had no impact on self‐reported energy intake during an in‐person MP24R, and that telephone recall data were comparable with in‐person recalls. Underreporting was a widespread problem (~26%) for all modes in this sample.  相似文献   

17.
The purpose of the present study was to compare the carbohydrate use of insulin-resistant obese Zucker rats with that of their lean littermates during steady-state exercise. Obese and lean rats were randomly assigned to a sedentary group or to a run group in which rats ran at 72-73% of their maximal O2 consumption, with the duration of exercise set to require an energy expenditure of 2.1-2.2 kcal. During the run the respiratory exchange ratio was significantly higher in the obese than in the lean rats [0.94 +/- 0.01 (SE) and 0.86 +/- 0.01, respectively], which indicate that the obese rats required 54% more carbohydrate than the lean rats. Total muscle glycogen utilization in the soleus, plantaris, and red and white gastrocnemius was not different between groups. Obese rats had total liver glycogen values five times greater than those of lean rats (833.38 +/- 101.4 and 152.8 +/- 37.5 mg, respectively) and utilized twice as much liver glycogen as their lean littermates (193.5 and 90.4 mg, respectively). The obese rats exhibited higher blood glucose and insulin concentrations than the lean rats during the run. These findings indicate that, despite their characteristic insulin resistance, the obese Zucker rats had a greater dependency on carbohydrate as a substrate during exercise than their lean littermates and that the major source of this carbohydrate was liver glycogen.  相似文献   

18.
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.  相似文献   

19.
The rates of muscle glucose uptake of lean and obese Zucker rats were assessed via hindlimb perfusion under basal conditions (no insulin), in the presence of a maximal insulin concentration (10 mU/ml), and after electrically stimulated muscle contraction in the absence of insulin. The perfusate contained 28 mM glucose and 7.5 microCi/mmol of 2-deoxy-D-[3H-(G)]glucose. Glucose uptake rates in the soleus (slow-twitch oxidative fibers), red gastrocnemius (fast-twitch oxidative-glycolytic fibers), and white gastrocnemius (fast-twitch glycolytic fibers) under basal conditions and after electrically stimulated muscle contraction were not significantly different between the lean and obese rats. However, the rate of glucose uptake during insulin stimulation was significantly lower for obese than for lean rats in all three fiber types. Significant correlations were found for insulin-stimulated glucose uptake and glucose transporter protein isoform (GLUT-4) content of soleus, red gastrocnemius, and white gastrocnemius of lean (r = 0.79) and obese (r = 0.65) rats. In contrast, the relationships between contraction-stimulated glucose uptake and muscle GLUT-4 content of lean and obese rats were negligible because of inordinately low contraction-stimulated glucose uptakes by the solei. These results suggest that maximal skeletal muscle glucose uptake of obese Zucker rats is resistant to stimulation by insulin but not to contractile activity. In addition, the relationship between contraction-stimulated glucose uptake and GLUT-4 content appears to be fiber-type specific.  相似文献   

20.
Seven lean and five obese boys, aged 9-12 yr, exercised in four environments: 21.1, 26.7, 29.4, and 32.2 degrees C Teff. Subjects walked on a treadmill at 4.8 km/h, 5% grade for three 20-min exercise bouts separated by 5-min rest periods. Rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), sweat rate, and oxygen uptake (VO2) were measured periodically throughout the session. Lean boys had lower Tre and HR than obese boys in each of the environments. Increases in Tre were significantly greater for the obese at 26.7 and 29.4 degrees C Teff. No significant differences in Tsk and sweat rate (g-m-2-h-1) were observed between lean and obese boys. Obese boys had significantly lower oxygen consumptions per kg but worked at a significantly higher percentage of VO2max than lean boys when performing submaximal work. Responses of the obese boys to exercise in the heat were similar to those of heavy prepubertal girls studied previously, except that the boys were more tolerant of exercise at 32.2 degrees C Teff than the girls. Lean boys had lower HR than lean girls in each environment, but lower Tre only at 32.2 degrees C Teff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号