首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels.  相似文献   

2.
We have demonstrated by indirect immunofluorescence the cellular localization of a monoclonal antibody (mAb 224-58), produced after immunization of a mouse with human central nervous system (CNS) myelin. Serologically, mAb 224-58 was found to be specific for 3'-sulfomonogalactosylglycolipids, namely 3'-sulfogalactosylceramide (SGC) and 3'-sulfogalactosyl 1-O-alkyl ether 2-O-acylglycerol (seminolipid). This mAb did not bind to SGC-containing tissues such as kidney, liver, spleen, or brain, nor to muscle. However mAb 224-58 did stain positively mouse, rat, and human peripheral nerve sections. In these latter sections, mAb 224-58 was bound to Schwann cell bodies and processes. The specificity of mAb 224-58 for Schwann cells was ascertained on teased rat sciatic nerves and rat Schwann cell cultures. Cells positive for mAb 224-58 were also positive for laminin, and negative for Thy 1-1 antigens both in teased fibers and Schwann cell cultures. In addition, in teased nerve preparations, mAb 224-58-positive cells were also galactosylceramide (GalC)- and SGC-positive. Isolated Schwann cells also expressed 224-58 antigen, even after prolonged time in culture. On testis sections, which contain both SGC and seminolipid, the SGC-positive cells, i.e., the spermatogonia, were always 224-58-negative. But the other germinal cells were 224-58-positive. This suggests that although 224-58 does not discriminate between SGC and seminolipid in serological tests, these lipids in their naturally occurring membrane acquire a spatial configuration that renders them distinguishable to their respective antibody.  相似文献   

3.
Sollberger  M.  Erne  B.  Sansano  S.  Steck  A. J.  Schaeren-Wiemers  N. 《Brain Cell Biology》2002,31(1):5-14
The functional importance of the basal lamina in Schwann cell development and in adult peripheral nerve fibers is well known. We have demonstrated previously by confocal microscopy that IgM deposits are present on the basal lamina of myelinating Schwann cells of nerve biopsies from patients with an anti-MAG IgM neuropathy. Therefore, the basal lamina was postulated to represent an early target for the uptake of autoantibodies on the surface of myelinated nerve fibers. In this study, the preparation of cell- and myelin-free basal lamina from human peripheral nerves, using a detergent-dependent method is described and characterized by immunohistochemical and biochemical analysis. Using these methods we demonstrated that an enrichment of basal lamina components of Schwann cells with extraction of myelin could be achieved. Western blot analysis and immunohistochemical characterization showed that anti-MAG IgM antibodies did not recognize an epitope on the basal lamina of normal nerves. The established method will allow in situ investigations of basal lamina components from human peripheral nerves in health and in disease, e.g. peripheral neuropathies of infectious or inflammatory origin.  相似文献   

4.
5.
During Wallerian degeneration of rat sciatic nerve, the expression of apolipoprotein E increases and apolipoprotein E-containing endoneurial lipoproteins accumulate in the distal nerve segment. In established primary cultures dissociated from dorsal root ganglia, Schwann cells and sensory neurons internalized rhodamine-labeled lipoproteins isolated from crushed rat sciatic nerve as well as low density lipoprotein (LDL) from human serum. The uptake of endoneurial lipoproteins could be inhibited by an excess of LDL or at low temperature (4 degrees C). After transection of nerve fibers in dorsal root ganglia explant cultures, the uptake of lipoproteins was markedly stimulated in Schwann cells that were in close proximity to degenerating neurites. A specific monoclonal antibody directed to the bovine LDL receptor (clone C7) was shown to cross-react with LDL receptor preparations of rat endoneurial cells. LDL receptor immunoreactivity was expressed by cell bodies and processes of cultured Schwann cells, sensory neurons, and fibroblasts from dorsal root ganglia. Incubation of Schwann cells and neurons with the LDL receptor antibody strongly inhibited the uptake of endoneurial lipoproteins. Our results provide direct evidence for the important role of the LDL receptor-mediated pathway to internalize endoneurial lipoproteins into Schwann cells and peripheral neurons required for reuse of cholesterol and other lipids in myelin and plasma membrane biogenesis during nerve repair.  相似文献   

6.
Abstract: The expression of decay-accelerating factor CD55, membrane cofactor protein CD46, and CD59 was studied on Schwann cells cultured from human sural nerve and myelin membranes prepared from human cauda equina and spinal cord. These proteins are regulatory membrane molecules of the complement system. CD55 and CD46 are inhibitors of C3 and C5 convertases and CD59 inhibits C8 and C9 incorporation into C5b-9 complex and C9-C9 polymerization. The presence of these proteins was assessed by using antibodies to each of the proteins by fluorescent microscopy, fluorescence-activated cell sorter analysis, and also sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis. Schwann cells in culture expressed CD55, CD46, and CD59. It is interesting that only CD59 was detected on myelin from both central and peripheral nerve tissue. The ability of these proteins to limit C3 peptide deposition and C9 polymerization in myelin was studied by western blot analysis. C3b deposition was readily detected on antibody-sensitized myelin incubated with normal human serum used as a source of complement but not with EDTA-treated or heat-inactivated serum. C3b deposition was not affected by anti-CD55 antibody. On the other hand, poly-C9 formation in myelin, which was maximum when 50% normal human serum was used, was increased four- to fivefold when myelin was preincubated with anti-CD59. Our data suggest that complement activation on myelin is down-regulated at the step of the assembly of terminal complement complexes, including C5b-9, due to the presence of CD59.  相似文献   

7.
Summary Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers.  相似文献   

8.
Immunocytological localization of the major glycoprotein of peripheral myelin P0 and its associated carbohydrate structures L2/HNK-1 and L3 was performed at the light- and electron-microscopic levels in mouse sciatic nerves at several developmental stages and in adulthood. P0 was first expressed on Schwann cells at the time that Schwann cells associated with axons on a 1:1 basis. P0 remains expressed at all times of myelin formation and in compact myelin. After cessation of myelination P0 is no longer detectable in the uncompacted parts of myelin, i.e., Schmidt-Lanterman incisures, paranodal loops, and outer and inner mesaxons. P0 is not detectable on basement membranes, interstitial collagens, and non-myelin-forming Schwann cells. The associated carbohydrate epitope L2 does not follow the expression of P0 at any developmental or adult stage. Until 21 days the L2 epitope is confined to nonmyelinated fibers. In sciatic nerves of mice older than 8 weeks, however, only a few nonmyelinated fibers remain L2-positive. L2 immunoreactivity is clearly seen in a subpopulation of compact myelin figures largely associated with motor fibers. The L3 epitope is never detectable on nonmyelinated fibers and becomes first visible when compact myelin is discerned. Unlike the L2 epitope L3 is present in most, if not all, compact myelin figures. These observations suggest that P0 may be involved in ensheathment of axons by Schwann cells at the decisive stages of initiation of myelination and later on, possibly in conjunction with the L3 carbohydrate structure, in maintenance of compact myelin. The appearance of the L2 carbohydrate epitopes in compact myelin of largely motor and fewer sensory nerve fibers at times when morphogenesis of myelin has ceased remains to be elucidated in functional terms.  相似文献   

9.
NDRG1 is an intracellular protein that is induced under a number of stress and pathological conditions, and it is thought to be associated with cell growth and differentiation. Recently, human NDRG1 was identified as a gene responsible for hereditary motor and sensory neuropathy-Lom (classified as Charcot-Marie-Tooth disease type 4D), which is characterized by early-onset peripheral neuropathy, leading to severe disability in adulthood. In this study, we generated mice lacking Ndrg1 to analyze its function and elucidate the pathogenesis of Charcot-Marie-Tooth disease type 4D. Histological analysis showed that the sciatic nerve of Ndrg1-deficient mice degenerated with demyelination at about 5 weeks of age. However, myelination of Schwann cells in the sciatic nerve was normal for 2 weeks after birth. Ndrg1-deficient mice showed muscle weakness, especially in the hind limbs, but complicated motor skills were retained. In wild-type mice, NDRG1 was abundantly expressed in the cytoplasm of Schwann cells rather than the myelin sheath. These results indicate that NDRG1 deficiency leads to Schwann cell dysfunction, suggesting that NDRG1 is essential for maintenance of the myelin sheaths in peripheral nerves. These mice will be used for future analyses of the mechanisms of myelin maintenance.  相似文献   

10.
Abstract: That many cells express more than one connexin (Cx) led us to examine whether Cxs other than Cx32 are expressed in the PNS. In addition to Cx32 mRNA, Cx43 and Cx26 mRNAs were detected in rat sciatic nerve by northern blot analysis. Cx43 mRNA, but not Cx26 mRNA, was expressed in both the primary Schwann cell culture and immortalized Schwann cell line (T93). The steady-state levels of the Cx43 mRNA in the primary Schwann cell culture increased 2.0-fold with 100 µ M forskolin, whereas that of P0 increased 7.0-fold. Immunoreactivity to Cx43 was detected on western blots of cultured Schwann cells, T93 cells, and sciatic nerves but not on blots of PNS myelin. Immunohistochemical study using human peripheral nerves revealed that anti-Cx43 antibody stained cytoplasm around nucleus of Schwann cells but not myelin, confirming western blot results. Although P0 expression was markedly decreased by crush injury of the sciatic nerves, Cx43 expression showed no apparent change. Developmental profiles showed that Cx43 expression in the sciatic nerve increased rapidly after birth, peaked at about postnatal day 6, and then decreased gradually to a low level. In adult rats, the Cx43 mRNA value was much lower than that of Cx32. These findings suggest that Cx43 is localized in Schwann cell bodies and that, compared with P0, its expression is less influenced by axonal contact and cyclic AMP levels. The high expression on postnatal day 6 indicates that Cx43 may be related to PNS myelination. Cx43 is another gap junction, but its function appears to differ from that of Cx32, as judged by the differences in their localization and developmental profiles.  相似文献   

11.
We have recently described a novel cDNA, SR13 (Welcher, A. A., U. Suter, M. De Leon, G. J. Snipes, and E. M. Shooter. 1991. Proc. Natl. Acad. Sci. USA. 88:7195-7199), that is repressed after sciatic nerve crush injury and shows homology to both the growth arrest-specific mRNA, gas3 (Manfioletti, G., M. E. Ruaro, G. Del Sal, L. Philipson, and C. Schneider, 1990. Mol. Cell Biol. 10:2924-2930), and to the myelin protein, PASII (Kitamura, K., M. Suzuki, and K. Uyemura. 1976. Biochim. Biophys. Acta. 455:806-816). In this report, we show that the 22-kD SR13 protein is expressed in the compact portion of essentially all myelinated fibers in the peripheral nervous system. Although SR13 mRNA was found in the central nervous system, no corresponding SR13 protein could be detected by either immunoblot analysis or by immunohistochemistry. Northern and immunoblot analysis of SR13 mRNA and protein expression during development of the peripheral nervous system reveal a pattern similar to other myelin proteins. Furthermore, we demonstrate by in situ mRNA hybridization on tissue sections and on individual nerve fibers that SR13 mRNA is produced predominantly by Schwann cells. We conclude that the SR13 protein is apparently exclusively expressed in the peripheral nervous system where it is a major component of myelin. Thus, we propose the name Peripheral Myelin Protein-22 (PMP-22) for the proteins and cDNA previously designated PASII, SR13, and gas3.  相似文献   

12.
Adult rat sciatic nerve is known to express high levels of ciliary neurotrophic factor (CNTF) mRNA and protein. Here we examine the cellular localization of CNTF protein and mRNA in peripheral nerve and the regulation of CNTF expression by peripheral axons. In intact nerve, CNTF immunoreactivity is found predominantly in the cytoplasm of myelin-related Schwann cells. After axotomy, CNTF immunoreactivity and mRNA levels fall dramatically and do not recover unless axons regenerate. This behavior is similar to the pattern of myelin gene expression in these nerves. We conclude that the expression of CNTF in Schwann cells depends on axon-Schwann cell interactions.  相似文献   

13.
14.
The myelin of the peripheral nervous system from the shiverer mutant mice is characterized by the absence of myelin basic protein, while the other myelin protein components are present at normal levels. Myelin lamella formation is normal in the shiverer mutant. Therefore, by using antiserum against myelin basic protein, we can distinguish the shiverer from the wild-type control myelin immunohistochemically. To study the cell lineage of Schwann cells, chimeras produced by the aggregation of eight-cell embryos from wild-type mice and shiverer mice have been used. Using myelin basic protein as a marker, it was observed that Schwann cells in the sciatic nerve existed as patches of cells with like-genotype. The patches occurred in a linear array along the axons with some intermingling of Schwann cells. Complete randomization by intermingling of Schwann cells was not observed and clones of Schwann cells may persist as contiguous groups throughout peripheral nerve development.  相似文献   

15.
The accumulation of misfolded proteins is associated with various neurodegenerative conditions. Mutations in PMP-22 are associated with the human peripheral neuropathy, Charcot-Marie-Tooth Type 1A (CMT1A). PMP-22 is a short-lived 22 kDa glycoprotein, which plays a key role in the maintenance of myelin structure and compaction, highly expressed by Schwann cells. It forms aggregates when the proteasome is inhibited or the protein is mutated. This study reports the application of atomic force microscopy (AFM) as a detector of profound topographical and mechanical changes in Trembler-J mouse (CMT1A animal model). AFM images showed topographical differences in the extracellular matrix and basal lamina organization of Tr-J/+ nerve fibers. The immunocytochemical analysis indicated that PMP-22 protein is associated with type IV collagen (a basal lamina ubiquitous component) in the Tr-J/+ Schwann cell perinuclear region. Changes in mechanical properties of single myelinating Tr-J/+ nerve fibers were investigated, and alterations in cellular stiffness were found. These results might be associated with F-actin cytoskeleton organization in Tr-J/+ nerve fibers. AFM nanoscale imaging focused on topography and mechanical properties of peripheral nerve fibers might provide new insights into the study of peripheral nervous system diseases.  相似文献   

16.
The presence of degradation products of the myelin/oligodendrocyte glycoprotein (MOG) and a new myelin/oligodendrocyte associated protein, FD1, defined by a monoclonal antibody was established in a subfraction (the floating fraction, or FF) of adult rabbit CNS. The histochemical distribution of FD1 was determined by indirect immunofluorescense using conventional and confocal microscopy. FD1 was found to be present in oligodendrocytes, and at the outer rim of CNS myelin sheaths. Strong antibody reactivity was noted at nodes of Ranvier, as well as in regions with a high nodal density. No staining of compact myelin was seen. In the PNS, inner and outer cytoplasmic compartments of the Schwann cells as well as their cell bodies were stained, with no staining of compact myelin. The FF has previously been shown to be highly enriched in Marchi-positive bodies. These structures are situated paranodally in the CNS of myelinated nerve fibers, and their presence has been interpreted as reflections of myelin breakdown and turnover occurring in association with myelin sheath segments situated close to nodes at Ranvier in adult, normal vertebrate CNS. The present findings extend previous observations of partially degraded myelin-associated proteins in the FF, and give further results indicating that Marchi-positive bodies are aspects of intermediate stages in myelin catabolism.  相似文献   

17.
18.
This is the first report of a quantitative radioimmunoassay for PO. The assay uses antigen-coated plastic microwells, with antibody binding detected by 125I-labeled protein A. Either peripheral myelin proteins or purified PO may be used as the antigen. Optimal extraction of tissue samples for PO immunoassay requires careful attention to the sodium dodecyl sulfate-to-protein ratio. Sodium dodecyl sulfate interference with antibody binding can be minimized by adding an excess of nonionic detergent and carrier protein to the incubation buffer. This method allows the detection of 0.8 ng of PO (20 ng/ml). Results from this assay showed little or no immunoreactivity in extracts of brain, centra myelin, liver, purified myelin basic proteins, cultured, purified secondary Schwann cells, or membrane preparations from these cells. PO was clearly detectable in Schwann cell cultures from 3- to 4-day-old rats at 12-18 h after dissociation (4% of the level in adult sciatic nerve) and in extracts of one-day-old rat sciatic nerve (2% of the level in adult nerve). Myelin basic protein radioimmunoassays showed that the ratio of PO to myelin basic protein is essentially constant in extracts of sciatic nerve from ne-day-old, four-day-old, and young adult rats. Another result was that PO levels are reduced in the trembler mouse sciatic nerve.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号