首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We have identified cDNAs clones for several cold-inducible mRNAs from the brown adipose tissue of mice. pCIN-1, a plasmid with a 900-base pair insert, encoded the mitochondrial uncoupling protein (UCP) as determined by the ability of the cDNA insert to select, by hybridization, an mRNA that could be translated into a 32,000-Da protein immunoprecipitable with anti-UCP antibodies. Nine tissues were analyzed; however, UCP cDNA hybridized to an mRNA species of 1.6 and 2.0 kilobase pairs only in brown adipose tissue. A maximum induction of 10-fold occurred within 6 h of exposure to cold (5 degrees C). A BamHI restriction fragment polymorphism detected by Southern blot analysis of genomic DNA in recombinant inbred mouse strains allowed us to map the UCP gene to Chromosome 8. The analysis of the UCP gene expression in diabetic (db) and obese (ob) mice maintained at 27 degrees C for 3 days followed by cold exposure for 4 h at 5 degrees C indicated that UCP mRNA levels in mutant mice were unaffected at 27 degrees C and only slightly reduced at 5 degrees C. Accordingly, the inability of diabetic and obese mice to thermoregulate is not associated with a lack of UCP mRNA induction.  相似文献   

2.
Increase in adipose mass results in obesity and modulation of several factors in white adipose tissue (WAT). Two important examples are tumor necrosis factor alpha (TNFalpha) and leptin, both of which are upregulated in adipose tissue in obesity. In order to isolate genes differentially expressed in the WAT of genetically obese db/db mice compared to their lean littermates, we performed RNA fingerprinting and identified haptoglobin (Hp), which is significantly upregulated in the obese animals. Hp is a glycoprotein induced by a number of cytokines, LPS (Lipopolysaccharide), and more generally by inflammation. A significant upregulation of WAT Hp expression was also evident in several experimental obese models including the yellow agouti (/) A(y), ob/ob and goldthioglucose-treated mice (10-, 8-, and 7-fold, respectively). To identify the potential signals for an increase in Hp expression in obesity, we examined leptin and TNFalpha in vivo. Wild type animals treated with recombinant leptin did not show any alteration in WAT Hp expression compared to controls that were food restricted to the level of intake of the treated animals. On the other hand, Hp expression was induced in mice transgenically expressing TNFalpha in adipose tissue. Finally, a significant downregulation of WAT Hp mRNA was observed in ob/ob mice deficient in TNFalpha function, when compared to the ob/ob controls. These results demonstrate that haptoglobin expression in WAT is increased in obesity in rodents and TNFalpha is an important signal for this regulation.  相似文献   

3.
We have investigated whether GH treatment influences the expression of UCP1, 2 and 3 mRNA in a KK-Ay obese mouse model. KK-Ay mice (n = 10) and C57Bl/6J control mice (n = 10) were injected subcutaneously with human GH (1.0 mg/kg/day and 3.5 mg/kg/day) for 10 days, and compared with mice injected with physical saline. The KK-Ay obese mice weighed significantly less (p < 0.01 : 1.0 mg/kg/day, p < 0.05 : 3.5 mg/kg/day) and had smaller inguinal subcutaneous and perimetric white adipose tissue (WAT) pads (p < 0.05 : 3.5 mg/kg/day), but increased skeletal muscle weight (p < 0.05). The brown adipose tissue (BAT) weight did not change significantly. Not only plasma free fatty acid and glucose levels but also plasma insulin levels decreased. The reduced HOMA-IR (homeostasis model assessment-insulin resistance) values suggested that insulin resistance was improved by GH treatment. UCP1 mRNA levels increased after the 3.5 mg GH treatment by 2.8-fold (p < 0.01 vs. saline controls) and 2.0-fold (p < 0.05 vs. 1 mg GH treatment) in BAT, and by 6.0-fold in subcutaneous WAT (p < 0.05 vs. controls). UCP2 mRNA levels increased 2.2-fold (p < 0.05 vs. control) and 2.1-fold (p < 0.05 vs. 1 mg GH treatment) in BAT, and 2.0-fold (p < 0.05 vs. controls) in skeletal muscle. One mg GH administration also stimulated UCP1 mRNA expression by 2.5-fold (p < 0.05 vs. controls) and UCP3 mRNA expression by 2.8-fold (p < 0.05 vs. controls) in the muscle. On the other hand, lean mice showed no significant difference in body composition or plasma parameters. UCP1, 2 and 3 mRNA expression in lean mice did not show any significant change after treatment with GH. We conclude that GH treatment increased mRNA levels for not only UCP1, but also UCP 2 and 3 in BAT, WAT and muscle in a KK-Ay obese mouse model. These findings suggest that GH-induced thermogenesis may contribute to the reduction in WAT and energy expenditure.  相似文献   

4.
The activity of lipoprotein lipase (LPL) was studied in interscapilar brown adipose tissue (BAT), epididymal white adipose tissue (WAT) and in the heart of lean and obese adult Zucker rats maintained at 22 degrees C or adapted to cold (10 degrees C). In WAT the specific activity per gram of tissue was lower in obese than in lean rats but the total activity within the tissue was three-fold higher. Cold acclimation did not modify total activity in either lean or obese rats. In BAT, but not in the heart, both specific and total activities were lower in obese than in lean animals. They were enhanced in both tissues following cold acclimation. Six-hour fasting led to a decrease in specific activity in WAT of lean rats but had no effect in obese animals; an increase was observed in BAT and heart of both genotypes. Insulin administration has no effect on activities in WAT in either 22 or 10 degrees C adapted obese rats. Norepinephrine administration stimulates LPL activity in BAT and heart of all groups. It is concluded that the lack of development of obesity previously observed in obese rats following cold acclimation is not due to a decreased capacity of lipid uptake by WAT. It might in part be due to an increased lipid oxidation in BAT.  相似文献   

5.
Male 12-week-old C57BL/KsJ db/db mice were treated for 1 week with a dietary admixture of an experimental antidiabetic agent, AS-6 (4-O-carboxymethylascochlorin, 0.1%). The fatty acid composition of the adipose tissue and its plasma membranes in the treated mice was compared with that in untreated db/db mice and their lean littermates. The results indicate that, when compared with the lean, the db/db adipose tissue and its plasma membrane are extremely rich in nonessential fatty acids, and AS-6 treatment modifies the fatty acyl composition only in the membranes in which 16:1 and 18:1 increase and C18 decreases.  相似文献   

6.
The nature of the primary biochemical lesions in genetically obese mice, which might prove to be useful models for human obesity, remains totally obscure. The recent finding that the expression of adipsin was virtually suppressed in both db/db and ob/ob adult mice has opened new perspectives, suggesting a potential role for this defect in the pathogenesis of obesity. To be of etiological significance, adipsin deficiency must be present very early in life when excess fat storage starts to develop. We show here that at 10 days of age db/db pups exhibit significantly overdeveloped adipose tissue as compared with lean (+/db) pups but similar levels of both adipose tissue adipsin mRNA and serum adipsin. Adipsin expression was still normal in obese mice 15 days old but frankly deficient at 30 days of age when hyperinsulinemia has developed. Thus the defect in adipsin expression in db/db mice is a secondary feature which cannot be ascribed a role in the onset of obesity.  相似文献   

7.
8.
9.
The protein bands of adipocyte plasma membranes from the genetically obese diabetic mice C57BL/KsJ db/db (db/db mice) showed slight but significant changes compared with their lean littermates. The treatment for 1 week with a new antidiabetic agent, AS-6, caused the changes to revert toward the condition in the lean littermates. In the absence of insulin, the plasma membrane and mitochondria mixture (P3 fraction) of the lean littermates densely labeled 55000 and 57000 dalton protein bands by phosphorylating with (a-32P)-ATP, whereas the labeling was less in the P3 from AS-6 treated and untreated db/db mice. Insulin inhibited phosphorylation of these bands in P3 from the lean littermates and untreated db/db mice, while the hormone enhanced the labeling in AS-6 treated db/db mice compared with the basal condition without insulin. Ca2+ greatly enhanced the labeling in all three groups, whereas Mg2+ mimicked the insulin action diminishing the labeling of these bands in the lean and untreated db/db groups. However, Mg2+ enhanced the phosphorylation in the P3 from AS-6 treated db/db mice compared with the basal condition.  相似文献   

10.
Uncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated. We have now examined the potential role of leptin, hyperphagia, increased tissue lipid content, and overexpression of tumor necrosis factor (TNF)-alpha in the upregulation of UCP2 mRNA expression in the liver and WAT in ob/ob mice. Treatment of ob/ob mice with leptin for 3 days significantly reduced their food intake but had no effect on the upregulation of UCP2 mRNA levels in the liver or WAT. To investigate the effect of feeding and higher tissue lipid content on the upregulation of UCP2 in liver and WAT, we compared UCP2 mRNA levels in ad-libitum fed and 72-h fasted control and ob/ob mice. In controls, fasting had no effect on UCP2 mRNA levels in liver, but increased UCP2 mRNA in WAT suggesting that the effects of fasting on UCP2 mRNA levels are tissue-specific. In ob/ob mice, fasting did not lower UCP2 mRNA levels in liver or WAT suggesting that the upregulation of UCP2 in ob/ob mice is not merely a direct consequence of increased food intake. 72-h fasting lowered hepatic total lipid content by 34% and 36% in control and ob/ob mice, respectively, without any corresponding decrease in hepatic UCP2 mRNA levels, suggesting that the enhanced UCP2 expression in the liver of ob/ob mice is not secondary to lipid accumulation in their livers. Although TNF-alpha has been shown to acutely increase UCP2 mRNA levels in liver and WAT, and is overexpressed in adipose tissue in obesity, deletion of the genes for both TNF receptors in ob/ob mice produces a further increase in UCP2 mRNA expression in liver and adipose tissue indicating a paradoxical inhibitory role. Taken together, these results suggest that the upregulation of UCP2 mRNA levels in the liver and WAT of ob/ob mice is not due to the lack of leptin, hyperphagia, increased tissue lipid content, or over-expression of TNF-alpha.  相似文献   

11.
12.
Ginseng berry reduces blood glucose and body weight in db/db mice.   总被引:3,自引:0,他引:3  
In this study, we observed anti-diabetic and anti-obesity effects of Panax ginseng berry in adult C57BL/Ks db/db mice and their lean littermates. Animals received daily intraperitoneal injections of Panax ginseng berry extract at 150 mg/kg body wt. for 12 consecutive days. On Day 5, the extract-treated db/db mice had significantly lower fasting blood glucose levels as compared to vehicle-treated mice (180.5+/-10.2 mg/dl vs. 226.0+/-15.3 mg/dl, P < 0.01). On day 12, the extract-treated db/db mice were normoglycemic (134.3+/-7.3 mg/dl) as compared to vehicle-treated mice (254.8+/-24.1 mg/dl; P < 0.01). Fasting blood glucose levels of lean mice did not decrease significantly after treatment with extract. After 12 days of treatment with the extract, glucose tolerance increased significantly, and overall blood glucose exposure calculated as area under the curve (AUC) decreased 53.4% (P < 0.01) in db/db mice. Furthermore, db/db mice treated with extract (150 mg/kg body wt.) showed weight loss from 51.0+/-1.9 g on Day 0, to 46.6+/-1.7 g on Day 5, and to 45.2+/-1.4 g on Day 12 (P < 0.05 and P < 0.01 compared to Day 0, respectively). The body weight of lean littermates also decreased at the same dose of extract. These data suggest that Panax ginseng berry extract may have therapeutic value in treating diabetic and obese patients.  相似文献   

13.
Expression of brown adipose tissue (BAT) associated proteins like uncoupling protein 1 (UCP1) in inguinal WAT (iWAT) has been suggested to alter iWAT metabolism. The aim of this study was to investigate the role of interleukin-6 (IL-6) in exercise training and cold exposure-induced iWAT UCP1 expression. The effect of daily intraperitoneal injections of IL-6 (3 ng/g) in C57BL/6 mice for 7 days on iWAT UCP1 expression was examined. In addition, the expression of UCP1 in iWAT was determined in response to 3 days of cold exposure (4°C) and 5 weeks of exercise training in wild type (WT) and whole body IL-6 knockout (KO) mice. Repeated injections of IL-6 in C57BL/6 mice increased UCP1 mRNA but not UCP1 protein content in iWAT. Cold exposure increased iWAT UCP1 mRNA content similarly in IL-6 KO and WT mice, while exercise training increased iWAT UCP1 mRNA in WT mice but not in IL-6 KO mice. Additionally, a cold exposure-induced increase in iWAT UCP1 protein content was blunted in IL-6 KO mice, while UCP1 protein content in iWAT was lower in both untrained and exercise trained IL-6 KO mice than in WT mice. In conclusion, repeated daily increases in plasma IL-6 can increase iWAT UCP1 mRNA content and IL-6 is required for an exercise training-induced increase in iWAT UCP1 mRNA content. In addition IL-6 is required for a full induction of UCP1 protein expression in response to cold exposure and influences the UCP1 protein content iWAT of both untrained and exercise trained animals.  相似文献   

14.
Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT.  相似文献   

15.
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals.  相似文献   

16.
The maximal activities of the key glycolytic enzymes hexokinase and 6-phosphofructokinase, were reduced in brown adipose tissue in db/db mice compared to their lean littermates. Treatment of db/db mice with the thermogenic beta-adrenoceptor agonist, BRL 26830, restored normoglycaemia. The only significant increase in activity of hexokinase and 6-phosphofructokinase in the BRL 26830-treated db/db mice occurred in brown adipose tissue where the total tissue activity increased 10- and 11-fold respectively. These changes together with increased 2-deoxyglucose uptake in vivo suggest that brown adipose tissue can play a quantitatively important role in the removal of glucose from the blood.  相似文献   

17.
Nonshivering thermogenesis induced in brown adipose tissue (BAT) during high-fat feeding is mediated through uncoupling protein 1 (UCP1). UCP2 is a recently identified homologue found in many tissues. To determine the role of UCP1 and UCP2 in thermoregulation and energy balance, we investigated the long-term effect of high-fat feeding on mRNA levels in mice at two different ambient temperatures. We also treated mice with the anorectic peptide enterostatin and compared mRNA levels in BAT, white adipose tissue (WAT), stomach, and duodenum. Here, we report that high-fat feeding at 23 degrees C increased UCP1 and UCP2 levels in BAT four- and threefold, respectively, and increased UCP2 levels fourfold in WAT. However, at 29 degrees C, UCP1 decreased, whereas UCP2 remained unchanged in BAT and increased twofold in WAT. Enterostatin increased UCP1 and decreased UCP2 mRNA in BAT. In stomach and duodenum, high-fat feeding decreased UCP2 mRNA, whereas enterostatin increased it. Our results suggest that the regulation of uncoupling protein mRNA levels by high-fat feeding is dependent on ambient temperature and that enterostatin is able to modulate it.  相似文献   

18.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-alpha and interleukin-1beta contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

19.
Uncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated. We have now examined the potential role of leptin, hyperphagia, increased tissue lipid content, and overexpression of tumor necrosis factor (TNF)-α in the upregulation of UCP2 mRNA expression in the liver and WAT in ob/ob mice. Treatment of ob/ob mice with leptin for 3 days significantly reduced their food intake but had no effect on the upregulation of UCP2 mRNA levels in the liver or WAT. To investigate the effect of feeding and higher tissue lipid content on the upregulation of UCP2 in liver and WAT, we compared UCP2 mRNA levels in ad-libitum fed and 72-h fasted control and ob/ob mice. In controls, fasting had no effect on UCP2 mRNA levels in liver, but increased UCP2 mRNA in WAT suggesting that the effects of fasting on UCP2 mRNA levels are tissue-specific. In ob/ob mice, fasting did not lower UCP2 mRNA levels in liver or WAT suggesting that the upregulation of UCP2 in ob/ob mice is not merely a direct consequence of increased food intake. 72-h fasting lowered hepatic total lipid content by 34% and 36% in control and ob/ob mice, respectively, without any corresponding decrease in hepatic UCP2 mRNA levels, suggesting that the enhanced UCP2 expression in the liver of ob/ob mice is not secondary to lipid accumulation in their livers. Although TNF-α has been shown to acutely increase UCP2 mRNA levels in liver and WAT, and is overexpressed in adipose tissue in obesity, deletion of the genes for both TNF receptors in ob/ob mice produces a further increase in UCP2 mRNA expression in liver and adipose tissue indicating a paradoxical inhibitory role. Taken together, these results suggest that the upregulation of UCP2 mRNA levels in the liver and WAT of ob/ob mice is not due to the lack of leptin, hyperphagia, increased tissue lipid content, or over-expression of TNF-α.  相似文献   

20.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-α and interleukin-1β contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号