首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
[2Fe2S] ferredoxins isolated from various plants and algae comprise 93–99 amino acid residues and resemble each other not only in sequences, but also in physiological functions. One of them isolated from Spirulina platensis was subjected to X-ray analysis and its three dimensional structure is now known. [2Fe2S] ferredoxins of a different type are found in halobacteria and comprise 128 amino acid residues. Both types of the [2Fe2S] ferredoxins exhibit low redox potentials. By comparing the amino acid sequences of 28 [2Fe2S] ferredoxins and the tertiary structure of S. platensis ferredoxin we predicted a common three-dimensional structure to the [2Fe2S] ferredoxins and proposed a molecular surface area to be interacting with FNR. An artificial small molecule composed of 20 amino acid residues is designed on the basis of the tertiary structure of S. platensis ferredoxin. The amino acid sequence was predicted to be ProTyrSerCysArgAlaGlyAlaCysSerThrCysAlaGly ProLeuLeuThr CysVal which should have a [2Fe2S] cluster with a low redox potential  相似文献   

2.
In 80% dimethyl sulfoxide/H2O, Azotobacter ferredoxin FeS clusters can be extruded with benzene thiol. The extruded clusters have an absorption spectra maximum at 458 nm which is characteristic of 4Fe4S centers. The amino terminal sequence of the Azotobacter ferredoxin has 7 of the 8 Cys residues at residue numbers 8, 11, 16, 20, 24, 39 and 42. Except for Cys 24, all of these residues can be correlated to homologous Cys residues in other bacterial ferredoxins. Although two thirds of the first 45 residues are identical to or conservative replacements for the first 43 residues of other bacterial ferredoxins, the insertion of Cys-24 indicates a major change in the environment of one of the two 4Fe4S clusters.  相似文献   

3.
Two types of iron-sulfur clusters, [3 Fe–3 S] and [4 Fe–4 S], were identified by 1H-NMR in ferredoxins from Thermus thermophilus, Mycobacterium smegmatis and Pseudomonas ovalis. The [4 Fe–4 S] clusters always showed the redox couples which had potentials lower than that of the [3 Fe–3 S] clusters.  相似文献   

4.
G L Anderson  J B Howard 《Biochemistry》1984,23(10):2118-2122
The Fe-S center of oxidized Fe protein from Azotobacter vinelandii nitrogenase is decomposed by alpha,alpha'-dipyridyl in a biphasic process. In the presence of MgATP, 2 Fe are immediately removed by chelation while the additional irons are removed only after several hours. A slower biphasic Fe release also was observed in the presence of chelator alone. MgADP prevented the Fe release by chelator. An intermediate in the reaction was isolated containing 2 Fe. The visible spectrum of the intermediate was similar to that of 2Fe-2S ferredoxins (epsilon max at 325, 416, and 460 nm of 16.1, 11.3, and 9.0 mM-1 cm-1). The 2Fe form was electron paramagnetic resonance (EPR) silent until partially reduced with sodium dithionite. The EPR spectral properties were similar to 2Fe-2S ferredoxins; namely, the Fe center had resonances at g = 2.00, 1.94, and 1.92 which were detectable, essentially unbroadened at 70 K. The results suggest that in the oxidized (2+) state Fe protein can undergo a 4Fe to 2Fe conversion.  相似文献   

5.
The properties of [Fe(3)S(4)](+,0) clusters in wild-type and mutant forms of Pf Fd with Asp, Ser, Cys, Val, His, Asn, and Tyr residues occupying position 14, i.e., proximal to the three micro(2)-S atoms of the cluster, have been investigated by the combination of EPR, variable-temperature magnetic circular dichroism (VTMCD), and resonance Raman (RR) spectroscopies. Two distinct types of [Fe(3)S(4)] clusters are identified on the basis of the breadth of the S = (1)/(2) [Fe(3)S(4)](+) EPR resonances and the marked differences in the VTMCD spectra of the S = 2 [Fe(3)S(4)](0) clusters. On the basis of the available NMR data for [Fe(3)S(4)](+, 0) clusters in ferredoxins, the distinctive properties of these two types of [Fe(3)S(4)] clusters are interpreted in terms of different locations of the more strongly coupled pair of irons in the oxidized clusters and the valence-delocalized pair in the reduced clusters. Near-IR VTMCD measurements indicate the presence of S = (9)/(2) valence-delocalized pairs in both types of [Fe(3)S(4)](0) clusters, and the spin-dependent delocalization energies associated with the Fe-Fe interactions were determined to be approximately 4300 cm(-)(1) in both cases. We conclude that the nature of the residue at position 14 in Pyrococcus furiosus ferredoxin is an important determinant of the location of the reducible pair of irons in a [Fe(3)S(4)](+,0) cluster, and the redox properties of the wild-type and mutant ferredoxins are discussed in light of these new results.  相似文献   

6.
We report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabaena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously [Skjeldal, L., Westler, W. M., & Markley, J. L. (1990) Arch. Biochem. Biophys. 278, 482-485]. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. This pattern and temperature dependence are distinctly different from those found with reduced plant-type ferredoxins which have signal centered around +120 ppm with Curie-type temperature dependence, assigned to cysteines which interact with Fe(III), and signals centered around +20 ppm with anti-Curie temperature dependence, assigned to cysteines which interact with Fe(II) [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A ferredoxin containing only one [Fe4S4] cluster was purified from Clostridium thermoaceticum. It has a molecular weight of about 7,300, a partial specific volume of 0.67, and an isoelectric point of 3.25. Its absorption spectrum has two maxima at 390 nm (epsilon = 16.8 X 10(3)M-1cm-1) and at 280 nm (epsilon = 24.2 X 10(3)M-1cm-1). The absorption at 390 nm is almost half that of other clostridial ferredoxins, which have two [Fe4S4] clusters, and is similar to other ferredoxins with only one [Fe4S4] cluster. The ferredoxin had high thermal stability and retained over 50% of its activity after treatment at 80 degrees C. It functions in the transfer of electrons from pyruvate to nicotinamide adenine dinucleotide phosphate (NADP), which indicates the presence of pyruvate:ferredoxin oxidoreductase and reduced ferredoxin-NADP reductase in C, thermoaceticum. NADPH is used in the synthesis of acetate from CO2 in this organism.  相似文献   

8.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

9.
The fumarate reductase complex and soluble enzyme from Escherichia coli have been investigated by low temperature magnetic circular dichroism and electron paramagnetic resonance spectroscopies. The results confirm the presence of one [2Fe-2S] cluster and show that the high potential iron-sulfur center is a 3Fe cluster of the type found in bacterial ferredoxins. Since the 3Fe cluster is present in catalytically competent enzyme and does not appear to be involved in any type of cluster conversion under reducing conditions, we conclude that it is an intrinsic component of the functional enzyme. The significance of the results is discussed in relation to the published amino acid sequence and the iron-sulfur cluster composition of bacterial fumarate reductases.  相似文献   

10.
In vivo hydrogen production in Clostridium acetobutylicum involves electron transfer between ferredoxin and [FeFe]-hydrogenase. Five C. acetobutylicum open reading frames were annotated as coding for putative ferredoxins. We focused our biophysical and biochemical investigations on CAC0303 and CAC3527, which possess the sequence signature and length of classical 2[4Fe4S] clostridial ferredoxins but differ significantly in theoretical pI. After cloning, heterologous expression in E. coli followed by in vitro Fe-S incorporation and purification, CAC0303 was shown to have a regular electron paramagnetic resonance (EPR) signal for a classical 2[4Fe4S] clostridial ferredoxin, while CAC3527 displayed an unusual EPR signal and a quite low reduction potential. Both ferredoxins were reduced in vitro by C. acetobutylicum [FeFe]-hydrogenase, but the CAC3527 reduction rate was 10-fold lower than that of CAC0303. These results are consistent with the efficiency of intermolecular electron transfer being dictated by the redox thermodynamics, the contribution of the ferredoxin global charge being only minor. The physiological function of CAC3527 is discussed.  相似文献   

11.
Ferredoxins are Fe–S proteins with low molecular weight (6–12000) which act as electron carriers at very low redox potentials eg. –300 to –500 mV, in diverse biochemical processes such as bacterial and plant photosynthesis, N2 fixation, carbon metabolism, oxidative phosphorylation and steroid hydroxylation. They are found in a wide range of organisms from the primitive obligate anaerobic bacteria, through photosynthetic bacteria, blue-green and green algae, to all higher plants and animals. Three types of ferredoxins are known –8 Fe+8 S, 4 Fe+4 S and 2 Fe+2 S. All three have been found in bacteria while the 2 Fe and some 8 Fe ferredoxins have been found in plants and animals possibly representing an evolutionary sequence. The 8 Fe ferredoxin may all be composed of two 4 Fe units. We have proposed that because of the simplicity of the 8 Fe ferredoxins (only 9 common simple amino acids in clostridia, 6 of which have been detected in the Murchison meteorite) they may have been amongst the earliest proteins formed during the origin of life. A simple peptide of about 27 amino acids could incorporate inorganic Fe+S (or possibly an existing Fe–S complex) into it nonenzymatically under anaerobic conditions to form a protein carrying one or two electrons at the potential of the H2 electrode. More than ten Fe–S model compounds have been proposed as analogues of the 4 Fe or 2 Fe containing active centres; inorganic, organometallic and peptide complexes have been synthesized. A few have many of the properties of ferredoxins but none as yet fulfills a sufficient number of criteria to substitute for ferredoxins chemically and biologically — a goal which will provide many clues to primitive peptide systems undergoing biological electron transfer reactions.  相似文献   

12.
Background: [2Fe–2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe–2S] ferredoxin from a eukaryotic organism in its native form.Results: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 Å resolution – the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins.Conclusions: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe–2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.  相似文献   

13.
Rubredoxin and two distinct ferredoxins have been purified from Desulfovibrio africanus. The rubredoxin has a molecular weight of 6000 while the ferredoxins appear to be dimers of identical subunits of approximately 6000 to 7000 molecular weight. Rubredoxin contains one iron atom, no acid-labile sulfide and four cysteine residues per molecule. Its absorbance ratio A278/A490 is 2.23 and its amino acid composition is characterized by the absence of leucine and a preponderance of acidic amino acids.

The two ferredoxins, designated I and II, are readily separated on DEAE-cellulose. The amino acid compositions of ferredoxins I and II show them to be different protein species; the greater number of acidic amino acid residues in ferredoxin I than in ferredoxin II appears to account for separation based on electronic charge. Both ferredoxins contain four iron atoms, four acid-labile sulfur groups and either four (ferredoxin II) or six (ferredoxin I) cysteine residues per molecule. Spectra of the two ferredoxins differ from those of ferredoxins of other Desulfovibrio species by exhibiting a pronounced absorption peak at 283 nm consistent with an unusual high content of aromatic residues. The A385/A283 absorbance ratio of ferredoxins I and II are 0.56 and 0.62, respectively.

The N-terminal sequencing data of the two ferredoxins clearly indicate that ferredoxins I and II are different protein species. However, the two proteins exhibit a high degree of homology.

The physiological activity of ferredoxins I and II appears to be similar as far as the electron transfer in the phosphoroclastic reaction is concerned.  相似文献   


14.
The diiron ferredoxins have a common diamond-core structure with two bridging sulfides, but differ in the nature of their terminal ligands: either four cysteine thiolates in the Fe(2)S(2) ferredoxins or two cysteine thiolates and two histidine imidazoles in the Rieske ferredoxins. Contributions of the bridging (b) and terminal (t) ligands to the resonance Raman spectra of the Fe(2)S(2) ferredoxins have been distinguished previously by isotopic substitution of the bridging sulfides. We now find that uniform (15)N-labeling of Anabaena Fe(2)S(2) ferredoxin results in shifts of -1 cm(-1) in the Fe-S(t) stretching modes at 282, 340, and 357 cm(-1). The (15)N dependence is ascribed to kinematic coupling of the Fe-S(Cys) stretch with deformations of the cysteine backbone, including the amide nitrogen. No (15)N dependence occurs for the nu(Fe-S(b)) modes at 395 and 426 cm(-1). Similar effects are observed for the Rieske center in T4MOC ferredoxin from the toluene-4-monooxygenase system of Pseudomonas mendocina. Upon selective (15)N-labeling of the alpha-amino group of cysteine, the vibrational modes at 321, 332, 350, and 362 cm(-1) all undergo shifts of -1 to -2 cm(-1), thereby identifying them as combinations of nu(Fe-S(t)) and delta(Cys). These same four modes undergo similar isotope shifts when T4MOC ferredoxin is selectively labeled with (15)N-histidine ((15)N in either the alpha1,delta1 or delta1,epsilon2 positions). Thus, the Fe-S(Cys) stretch must also be undergoing kinematic coupling with vibrations of the Fe-His moiety. The extensive kinematic coupling of iron ligand vibrations observed in both the Fe(2)S(2) and Rieske ferredoxins presumably arises from the rigidity of the protein framework and is reminiscent of the behavior of cupredoxins. In both cases, the structural rigidity is likely to play a role in minimizing the reorganization energy for electron transfer.  相似文献   

15.
1. The primary structure of a 4Fe-4S ferredoxin from Bacillus stearothermophilus was determined and shown to consist of a single polypeptide chain of 81 amino acid residues. The molecular weight of the holoprotein is about 9120. 2. There are only four cysteine residues in the molecule; three of these are located near the N-terminus as a Cys-X-X-Cys-X-X-Cys segment, and the fourth cysteine residue is followed by a proline and located in the C-terminal half. 3. The Fe-S chromophore in B. stearothermophilus ferredoxin was previously well characterized and was shown to consist of a single 4Fe-4S cluster. This ferredoxin sequence establishes for the first time the relative location of the four cysteine residues necessary to bind the 4Fe-4S cluster of a 4Fe ferredoxin, and is in agreement with the criteria for the relative positions of the cysteines proposed from X-ray-crystallographic studies on an 8Fe (two 4Fe-4S clusters) ferredoxin. 4. The sequence of B. stearothermophilus ferredoxin is homologous in many segments to that of other bacterial ferredoxins, the degree of homology being greater towards ferredoxins from Desulfovibrio gigas and photosynthetic bacteria than to Clostridial ferredoxins. 5. The presence of a relatively higher number of glutamic acid and lower number of cysteine residues in the molecule may explain the greater thermal stability and oxygen-insenstivity of this ferredoxin.  相似文献   

16.
Assignment of hyperfine-shifted resonances in paramagnetic metalloproteins such as Fe2S2 ferredoxins poses a major experimental challenge due to hyperfine shifts and/or severe line broadening. We have explored the possibility of using structural data from homologous proteins as part of an assignment strategy for the sequence-specific assignment of hyperfine-shifted backbone carbonyl (13C') and nitrogen resonances (15N) in Fe2S2 ferredoxins. This strategy is based on the assignment of resonances in the paramagnetic region to particular types of amino acid residues using selective isotope labeling. Reduced metal-nuclear distances are then calculated from experimentally determined T1 relaxation times for those resonances and the calculated distances aligned with the distances of nuclei at corresponding amino acid sequence positions in the crystal structure of a structurally homologous protein. The comparative assignment approach has met with success in correctly predicting the 13C' and 15N assignments in Pdx degrees from the crystal structure data of two similar and related ferredoxins, namely bovine adrenodoxin and Anabaena ferredoxin. Sequence-specific assignments made in this fashion were verified by selective 13C'{15N} decoupling experiments.  相似文献   

17.
The (Fe2S2)2+ complex of an artificial 20-peptide ligand, Ac-Pro-Tyr-Ser-Cys-Arg-Ala-Gly-Ala-Cys-Ser-Thr-Cys-Ala-Gly-Pro-Leu-Leu-T hr-Cys- Val-NH2, containing an invariant Cys-A-B-C-D-Cys-X-Y-Cys (A, B, C, D, X, Y = amino acid residues) fragment of plant-type ferredoxins was synthesized by a ligand exchange method with [Fe2S2(S-t-Bu)4]2-. 1H-nmr spectroscopic and electrochemical data of the complex indicate the presence of two coordination isomers. One of them having a Cys-X-Y-Cys bridging coordination to the two Fe(III) ions, has the (Fe2S2)2+ core environment similar to those of the denatured plant-type ferredoxins and exhibits a positive shifted redox potential at -0.64 V vs saturated colonel electrode (SCE) in N,N-dimethylformamide (DMF). Another isomer with the Cys-A-B-C-D-Cys bridging coordination shows a negative redox potential at -0.96 V vs SCE in DMF.  相似文献   

18.
We have measured the X-ray absorption spectra of Fe in photosystem I (PS I) preparations from spinach and a thermophilic cyanobacterium, Synechococcus sp., to characterize structures of the Fe complexes that function as electron acceptors in PS I. These acceptors include centers A and B, which are probably typical [4Fe-4S] ferredoxins, and X. The structure of X is not known, but its electron paramagnetic resonance (EPR) spectrum has generated the suggestions that it is either a [2Fe-2S] or [4Fe-4S] ferredoxin or an Fe-quinone species. The iron X-ray absorption K-edge and iron extended X-ray absorption fine structure (EXAFS) spectra reveal that essentially all of the 11-14 Fe atoms present in the reaction center are present in the form of Fe-S centers and that not more than 1 atom out of 12 could be octahedral or oxygen-coordinated Fe. This suggests that, besides A and B, additional Fe-S clusters are present which are likely to be X. Our EXAFS spectra cannot be simulated adequately by a mixture of [4Fe-4S] ferredoxins with typical bond lengths and disorder parameters because the amplitude of Fe backscattering is small; however, excellent simulations of the data are consistent with a mixture of [2Fe-2S] ferredoxins and [4Fe-4S] ferredoxins, or with unusually distorted [4Fe-4S] clusters. We presume that the [2Fe-2S] or distorted [4Fe-4S] centers are X. The X-ray absorption spectra of PS I preparations from Synechococcus and spinach are essentially indistinguishable.  相似文献   

19.
Kinetic results are presented for the reaction of reduced [2Fe-2S] ferredoxin from the blue-green alga Spirulina platensis with Co(NH3)6(3+), Co(edta)- and Co(acac)3 as oxidants at pH 8.0 at I0.10 (NaCl). The aim is to compare results obtained with those previously reported for the [2Fe-2S] ferredoxin from parsley, where the two ferredoxins under consideration are in evolutionary terms widely divergent (35% amino acid variations). The three oxidants chosen have different ligand sets and different charges, and are the complexes that in previous studies have given greatest diversity in behaviour. With Co(NH3)6(3+) first-order rate constants (oxidant in large excess) tend to a limiting value with increasing concentration of oxidant. With Co(edta)- and Co(acac)3 there is no similar tendency to limiting behaviour and a first-order dependence on oxidant is observed. The temperature-dependence of the Co(NH3)6(3+) reaction was investigated, and values were obtained for delta H0 [19.8kJ X mol-1 (4.7kcal X mol-1)] and delta S0 [129.3J X K-1 X mol-1 (30.9 cal X K-1 X mol-1)] for the association step that occurs before electron transfer. Whereas redox-inactive Cr(NH3)6(3+) displays competitive inhibition in the reaction of Co(NH3)6(3+), it accelerates the reaction of Co(edta)-, and only partially blocks the reaction with Co(acac)3. Results obtained are similar to those previously reported for parsley (and spinach) ferredoxin. It is concluded that electrostatics play a dominant role and that a negatively charged functional site on the protein common to all three ferredoxins is influential. Conserved negative patches at positions 67-69 and 94-96 within 1.0 nm (10A) of an Fe atom of the active site, as well as the exposed S atoms of cysteine residues 41 and 46, which are a part of the Fe2S*2(SR)4(3-) cluster, are the most likely possibilities. The various effects of Cr(NH3)6(3+) provide a means of testing for utilization of the same site in reactions of the ferredoxins with physiological partners.  相似文献   

20.
Ferredoxin was isolated from the blue-green alga Anabaena flos-aquae. Its homogeneity was shown by conventional and SDS-polyacrylamide gel electrophoresis, and isoelectric focusing on polyacrylamide gel columns, the latter indicating a pI at ca pH 3·7. The absorption spectrum had, in the oxidized state, maxima at 462, 421, 327 and 276 nm, with a shoulder at 284 nm, a spectrum characteristic of plant-type ferredoxins. The 421 : 276 nm absorbance ratio was typically 0.49. The ferredoxin effectively mediated the photoreduction of NADP+ by barley chloroplasts depleted of native ferredoxin. The MW obtained by sedimentation-equilibrium and sedimentation velocity-diffusion coefficient studies was ca 12 000 daltons, a value somewhat higher than suggested by amino acid composition data. The ferredoxin contained 2Fe and 2S per molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号