首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) limit left ventricular (LV) dysfunction and necrosis after reperfused myocardial infarction (RMI) and proteomics can detect changes in protein levels after injury. We applied proteomics to detect changes in levels of specific protein in the ischemic zone (IZ) and non-ischemic zone (NIZ) of dog hearts after in vivo RMI (90 min of anterior ischemia; 120 min of reperfusion) and treatment with intravenous vehicle (control) and the ARBs valsartan or irbesartan (10 mg/kg) over 30 min before RMI. We also assessed LV function, infarction and apoptosis. Both ARBs limited the RMI-induced LV dysfunction, infarct size and apoptosis. Proteomics detected differential expression of 5 randomly selected proteins in the IZ compared to the NIZ after RMI: decrease in subunit of ATP synthase isoform precursor (consistent with increased conversion to subunit under metabolic stress), M chain creatine kinase (consistent with cellular damage) and ventricular myosin light chain-1 (consistent with structural damage and decreased contractility); and increase in NAD+-isocitrate dehydrogenase (ICDH) and subunit and ATP synthase D chain (mitochondrial, consistent with metabolic dysfunction). Importantly, changes in NAD+-ICDH and ATP synthase D chain were reversed by ARB therapy. Thus, proteomics can detect regional changes in metabolic, contractile, and structural proteins after RMI and several of these proteins are favorably modified by ARBs, suggesting that they may be novel therapeutic targets. (Mol Cell Biochem 263: 179–188, 2004)  相似文献   

2.
Sawicki G  Jugdutt BI 《Proteomics》2004,4(7):2195-2202
In this study, we demonstrate the use of proteomics to detect regional differences in protein levels between the reperfused ischemic zone (IZ) and the nonischemic zone (NIZ) of dog hearts which were subjected to in vivo ischemia-reperfusion injury. Using the two-dimensional gel electrophoresis (2-DE) technique, we identified five proteins that were differentially expressed in the IZ versus NIZ: (1) the alpha subunit of ATP synthase isoform precursor was decreased 1.71-fold; (2) creatine kinase M chain was decreased 1.72-fold; (3) NAD+-isocitrate dehydrogenase, alpha subunit was increased 8.34-fold; (4) ATP synthase D chain, mitochondrial was increased 3.02-fold; (5) ventricular myosin light chain-1 was decreased 2.02-fold. Additionally, we found that the level of actin was decreased 2.6-times in the IZ compared to the NIZ on Western blot analysis but was unchanged on 2-DE.  相似文献   

3.
Sawicki G  Jugdutt BI 《Proteomics》2007,7(12):2100-2110
To determine whether reperfused myocardial infarction (RMI) induces PTM of the delta-subunit of the mitochondrial metabolic enzyme ATP synthase (ATP/delta) in the ischemic zone (IZ) and whether this can be reversed by the angiotensin II type 1 receptor (AT(1)R) blocker valsartan, we applied a pharmaco-proteomics approach in canine RMI hearts with or without valsartan pretreatment. Using the 2-DE technique, we identified differential regional expression of ATP/delta in the IZ compared to the non-ischemic zone (NIZ), with an approximately 2-fold increase in the IZ that was normalized by valsartan. Furthermore in the IZ, RMI triggered S-nitrosylation of cysteine-100, nitration of the two tyrosines 88 and 225, and hydroxylation of lysine-182 in ATP/delta followed by its myristoylation. Importantly, valsartan abolished these modifications of ATP/delta in the IZ, triggered phosphorylation of serine-76 in both the IZ and NIZ, and decreased necrosis, apoptosis, left ventricular dysfunction and remodeling. Thus, AT(1)R-blocker-induced cardioprotection during RMI is associated with phosphorylation of ATP/delta and inhibition of nitric oxide-related chemical modifications such as S-nitrosylation, nitration and hydroxylation. Targeting specific PTMs during RMI, such as those of ATP/delta with AT(1)R blockade, might be a potentially powerful novel therapeutic approach. However, the identification of S-nitrosylation was putative and requires MS/MS verification.  相似文献   

4.
To determine whether therapy with the angiotensin II type 1 receptor blocker (ARB) candesartan and the comparator angiotensin-converting-enzyme inhibitor (ACEI) enalapril during healing after reperfused ST-elevation myocardial infarction (RSTEMI) limit adverse remodeling of infarct zone (IZ) collagens and left ventricular (LV) diastolic dysfunction, we randomized 24 dogs surviving anterior RSTEMI (90-min coronary occlusion) to placebo, candesartan, and enalapril therapy between day 2 and 42. Six other dogs were sham. We measured regional IZ and non-infarct zone (NIZ) collagens (hydroxyproline; types I/III; cross-linking), transforming growth factor-β (TGF-β) and topography at 6 weeks, and hemodynamics, LV diastolic and systolic function, and remodeling over 6 weeks. Compared to sham, placebo-RSTEMI differentially altered regional collagens, with more pronounced increase in TGF-β, hydroxyproline, and type I, insoluble, and cross-linked collagens in the IZ than NIZ, and increased IZ soluble and type III collagens at 6 weeks, and induced persistent LV filling pressure elevation, diastolic and systolic dysfunction, and LV remodeling over 6 weeks. Compared to placebo-RSTEMI, candesartan and enalapril limited adverse regional collagen remodeling, with normalization of type III, soluble and insoluble collagens and decrease in pyridinoline cross-linking in the IZ at 6 weeks, and attenuation of LV filling pressure, diastolic dysfunction, and remodeling over 6 weeks. The results suggest that candesartan and enalapril during healing after RSTEMI prevent rather than worsen adverse remodeling of IZ collagens and LV diastolic dysfunction, supporting the clinical use of ARBs and ACEIs during subacute RSTEMI.  相似文献   

5.
Persistent left ventricular (LV) dysfunction after reperfused myocardial infarction (RMI) is a significant problem and angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) may limit reperfusion injury involving upregulation of AngII type 2 receptors (AT2R). To determine whether ARBs valsartan and irbesartan limit reperfusion injury and upregulate AT2R protein during RMI, we randomized dogs with anterior RMI (90 min ischemia; 120 min reperfusion) to 4 groups [valsartan (n = 6); irbesartan (n = 9); vehicle controls (n = 8); and sham (n = 6)] and measured serial in vivo hemodynamics, LV systolic and diastolic function, and inhibition of AngII pressor responses to the ARBs, and ex vivo infarct size, and regional AT1R and AT2R protein expression at the end of the reperfusion. Compared to the control group, both ARBs significantly limited the increase in left atrial pressure, promptly limited the deterioration of LV dP/dtmax, dP/dtmin, ejection fraction and diastolic function, limited infarct expansion and thinning, and limited infarct size. Importantly, both ARBs increased AT2R protein in the postischemic reperfused zone, with no change in AT1R protein. There were no changes in the sham group. The results suggest that limitation of myocardial injury associated with AT1R blockade combined with upregulation of AT2R protein expression contributes to the cardioprotective effects of ARBs during RMI. This beneficial effect of ARBs on persistent LV dysfunction after RMI should be evaluated in the clinical setting to determine the relative benefit of ARBs in patients who undergo reperfusion therapy for acute coronary syndromes.  相似文献   

6.
Persistent left ventricular (LV) dysfunction after reperfused myocardial infarction (RMI) is a significant problem and angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) may limit reperfusion injury involving upregulation of AngII type 2 receptors (AT2R). To determine whether ARBs valsartan and irbesartan limit reperfusion injury and upregulate AT2R protein during RMI, we randomized dogs with anterior RMI (90 min ischemia; 120 min reperfusion) to 4 groups [valsartan (n = 6); irbesartan (n = 9); vehicle controls (n = 8); and sham (n = 6)] and measured serial in vivo hemodynamics, LV systolic and diastolic function, and inhibition of AngII pressor responses to the ARBs, and ex vivo infarct size, and regional AT1R and AT2R protein expression at the end of the reperfusion. Compared to the control group, both ARBs significantly limited the increase in left atrial pressure, promptly limited the deterioration of LV dP/dtmax, dP/dtmin, ejection fraction and diastolic function, limited infarct expansion and thinning, and limited infarct size. Importantly, both ARBs increased AT2R protein in the postischemic reperfused zone, with no change in AT1R protein. There were no changes in the sham group. The results suggest that limitation of myocardial injury associated with AT1R blockade combined with upregulation of AT2R protein expression contributes to the cardioprotective effects of ARBs during RMI. This beneficial effect of ARBs on persistent LV dysfunction after RMI should be evaluated in the clinical setting to determine the relative benefit of ARBs in patients who undergo reperfusion therapy for acute coronary syndromes.  相似文献   

7.
We assessed whether upregulation of the angiotensin II (AngII) type 2 receptor (AT2R) during AngII type 1 receptor (AT1R) blockade might induce apoptosis in the in vivo rat model of reperfused myocardial infarction (RMI) and whether addition of an AT2R blocker abolishes that effect. We measured in vivo hemodynamics and left ventricular (LV) systolic and diastolic function (echocardiograms/Doppler), and ex vivo infarct size (triphenyl tetrazolium chloride), regional AT1R and AT2R proteins (immunoblots), and apoptosis (TUNEL assay and DNA ladder) after regional anterior RMI (60 min ischemia, 90 min reperfusion) in Sprague-Dawley rats randomized to intravenous AT1R blockade with candesartan (1 mg/kg, n = 9) or saline (controls, n = 14) over 30 min before RMI, and sham (n = 8). We also assessed the effect of AT2R blockade (PD123319, 10 mg/kg i.v.) plus candesartan on infarct size and apoptosis. Compared to controls, candesartan significantly (p < 0.001) limited increases in left atrial pressure, improved positive LV dP/dtmax and negative dP/dtmin, normalized LV ejection fraction, improved LV diastolic function, limited infarct expansion, decreased infarct size and apoptosis, and increased AT2R protein (not AT1R) in the reperfused ischemic zone. There were no changes in sham hearts. PD123319 abolished the candesartan-induced decrease in infarct size and LV dysfunction but not the decrease in apoptosis. Thus, during AT1R blockade in the in vivo rat model of RMI, regional AT2R upregulation contributes to the beneficial effect on infarct size and LV dysfunction but not on apoptosis, suggesting that the apoptosis is AT1R not AT2R-mediated.  相似文献   

8.
We determined effects of the vasopeptidase inhibitor (VPI) omapatrilat and angiotensin II type 1 receptor (AT(1)R) blocker (ARB) candesartan in rats during healing between day-2 and day-21 after reperfused myocardial infarction (RMI) on left ventricular (LV) remodeling and function, and regional matrix metalloproteinase (MMP)-9, tissue inhibitor of MMP (TIMP)-3, inducible-nitric-oxide-synthase (iNOS), oxidant-generating myeloperoxidase (MPO), and cytokines tumor-necrosis-factor (TNF)-alpha, interleukin (IL)-6 and IL-10, and transforming-growth-factor (TGF)-beta(1), and collagens. Compared to RMI-placebo, both agents reversed adverse LV remodeling and systolic and diastolic dysfunction, improved collagen remodeling, and normalized MMP-9 (activity, protein, and mRNA), TIMP-3 (protein and mRNA), and iNOS, MPO, TNF-alpha, IL-6, and TGF-beta(1) proteins, and improved MMP-9/TIMP-3 balance and IL-10 levels in previously ischemic zones. The results suggest that modulation of matrix proteases, oxidants, cytokines, and NOSs with omapatrilat and candesartan contribute to reversal of adverse collagen and LV remodeling and attenuation of LV dysfunction during healing after RMI.  相似文献   

9.
We assessed whether aging augments left ventricular (LV) damage, remodeling, and dysfunction and alters expression of healing-specific-matricellular proteins (HSMPs), matrix metalloproteinases (MMPs) and other pertinent proteins after acute reperfused-ST-segment-elevation myocardial infarction (RSTEMI) in the dog model. The findings suggest a novel role for HSMPs, MMPs, and the other proteins in the age-related increase in LV damage, remodeling, and dysfunction. Potentially detrimental effects of the altered proteins appear to outweigh beneficial effects and contribute to adverse outcome. Deleterious changes include the increase in matrix-degrading MMPs, inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha, HSMPs such as secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN), the blunted increase in endothelial-NOS (eNOS), and the decrease in IL-10 and neuronal NOS (nNOS). Potentially beneficial changes include increases in the HSMP secretory-leucocyte-protease-inhibitor (SLPI) and cytokine transforming growth factor (TGF)-beta(1). Targeting these proteins may mitigate enhanced LV remodeling and dysfunction with aging.  相似文献   

10.
We investigated whether therapeutic drugs given during healing following acute myocardial infarction (AMI) modify infarct collagens and left ventricular (LV) distensibility. We treated dogs with drugs from major classes (i.e., indomethacin, ibuprofen, captopril, enalapril, verapamil, amlodipine, propranolol, isosorbide dinitrate [ISDN] and digoxin) between day 2 and 6 weeks and measured hemodynamics, LV remodeling and function during healing over 6 weeks after transmural anterior AMI, and regional collagens, LV distensibility under increasing pressure, rupture threshold (RT), and topography at 6 weeks. Relative to sham, AMI controls showed infarct zone (IZ) expansion and thinning, 9.3-fold increase in IZ collagen, LV dilation and dysfunction, and no change in distensibility and RT. Relative to controls, indomethacin as well as enalapril, captopril and amlodipine decreased IZ collagen. Infarct expansion was attenuated by ibuprofen, captopril, amlodipine and ISDN but augmented by indomethacin. Infarct thinning was prevented by captopril, amlodipine and ISDN but enhanced by indomethacin. Importantly, indomethacin and enalapril enhanced LV distensibility and lowered RT. Distensibility correlated positively with IZ type III collagen and negatively with type I/III collagen ratio and pyridinoline cross-links whereas RT correlated positively with IZ type I collagen. Systolic volume and ejection fraction deteriorated with indomethacin but were improved or preserved with other therapies. The results demonstrate that different therapeutic drugs may produce different effects on IZ collagens during healing post-AMI: drugs that attenuate or adversely alter IZ collagens also enhance LV distensibility, augment adverse remodeling and lower RT, suggesting that testing for these effects post-AMI is warranted.  相似文献   

11.
The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression.  相似文献   

12.
13.
Cardiac hypertrophy induced by exercise is associated with less cardiac fibrosis and better systolic and diastolic function, suggesting that the adaptive mechanisms may exist in exercise-induced hypertrophy. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Sixteen male Sprague–Dawley rats were divided into trained (T) and control(C). T rats underwent eight weeks of swimming training seven days/week, using a high intensity protocol. Hearts were used to generate 2-D electrophoretic proteome maps. Training significantly altered 23 protein spot intensities (P < 0.05), including proteins associated with the mitochondria oxidative metabolism, such as prohibitin, malate dehydrogenase, short-chain acyl-CoA dehydrogenase, triosephosphate isomerase, electron transfer flavoprotein subunit beta, ndufa10 protein, ATP synthase subunit alpha and isocitrate dehydrogenase [NAD] subunit. Additionally, Prohibitin was increased in the exercise-induced hearts. Cytoskeletal, signal pathway, stress and oxidative proteins also increased within T groups. These results strongly support the notion that the observed changes in the expression of energy metabolism proteins resulted in a potential increase in the capacity to synthesise ATP, probably via mitochondrial oxidative metabolism. The observed changes in the expression of these metabolic and structural proteins induced by training may beneficially influence heart metabolism, stress response and signalling paths, and therefore improve the overall cardiac function.  相似文献   

14.
While secretory-leukocyte-protease-inhibitor (SLPI) may promote skin wound healing, its role in infarct healing after reperfused myocardial infarction (RMI) remains unclear. Short-term intravenous angiotensin II (AngII) receptor blocker therapy with candesartan (CN) attenuates increased SLPI and markers of early matrix/left ventricular (LV) in acute RMI. To determine whether reducing effects of AngII with CN or the vasopeptidase inhibitor omapatrilat (OMA) during the healing phase after RMI attenuates SLPI and other mediators of healing and matrix/LV remodeling, we measured these in Sprague–Dawley rats randomized to oral placebo, CN (30 mg/kg/day) or OMA (10 mg/kg/day) therapy during healing between days 2 and 23 after RMI and sham. On day-25, RMI-placebo showed significant LV remodeling, systolic/diastolic dysfunction and impaired passive compliance, and ischemic zone increases in SLPI, secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN) mRNA and protein. In addition, metalloproteinase (MMP)-9 and -2, a-disintegrin-and-metalloproteinase (ADAM)-10 and -17, inducible-nitric-oxide-synthase (iNOS), pro-inflammatory cytokines interleukin (IL)-6, and tumor necrosis factor-α, transforming growth factor (TGF)-β1 and its signaling molecule p-Smad-2, myeloperoxidase (MPO), AngII, MPO-positive granulocytes, MAC387-positive macrophages and monocytes, scar collagens, cardiomyocyte and fibroblast apoptosis, and microvascular no-reflow also increased whereas anti-inflammatory cytokine IL-10 decreased. Both CN and OMA attenuated all the changes except IL-10, which normalized. Thus, CN or OMA treatment during healing after RMI results in attenuation of SLPI as well as tissue AngII and mediators of inflammation and matrix/LV remodeling including SPARC, OPN, and ADAMs. Whether increasing SLPI on top of background AngII inhibition or therapy such as CN or OMA might produce added remodeling benefit needs study.  相似文献   

15.
Left ventricular (LV) dysfunction caused by myocardial infarction (MI) is accompanied by endothelial dysfunction, most notably a loss of nitric oxide (NO) availability. We tested the hypothesis that endothelial dysfunction contributes to impaired tissue perfusion during increased metabolic demands as produced by exercise, and we determined the contribution of NO to regulation of regional systemic, pulmonary, and coronary vasomotor tone in exercising swine with LV dysfunction produced by a 2- to 3-wk-old MI. LV dysfunction resulted in blunted systemic and coronary vasodilator responses to ATP, whereas the responses to nitroprusside were maintained. Exercise resulted in blunted systemic and pulmonary vasodilator responses in MI that resembled the vasodilator responses in normal (N) swine following blockade of NO synthase with N(omega)-nitro-L-arginine (L-NNA, 20 mg/kg iv). However, L-NNA resulted in similar decreases in systemic (43 +/- 3% in N swine and 49 +/- 4% in MI swine), pulmonary (45 +/- 5% in N swine and 49 +/- 4% in MI swine), and coronary (28 +/- 4% in N and 35 +/- 3% in MI) vascular conductances in N and MI swine under resting conditions; similar effects were observed during treadmill exercise. Selective inhibition of inducible NO synthase with aminoguanidine (20 mg/kg iv) had no effect on vascular tone in MI. These findings indicate that while agonist-induced vasodilation is already blunted early after myocardial infarction, the contribution of endothelial NO synthase-derived NO to regulation of vascular tone under basal conditions and during exercise is maintained.  相似文献   

16.
Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H(2)O(2)) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60min treatment with H(2)O(2) causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60min treatment with 2mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction.  相似文献   

17.
18.
Apolipoprotein (apo) E4 sets the stage for neuropathology in Alzheimer's disease (AD) by causing mitochondrial dysfunction and altering mitochondria-associated membranes. Contact and apposition of mitochondrial-endoplasmic reticulum membranes are enhanced in brain cells in AD and associated with increases in tethering and spacing proteins that modulate many cellular processes. Contact site protein levels are higher in apoE4 cells. In apoE4 neurons, the NAD+/NADH ratio is lowered, reactive oxygen species are increased, and NAD/NADH pathway components and redox proteins are decreased. Oxidative phosphorylation is impaired and reserve ATP generation capacity is lacking. ApoE4 neurons have ∼50% fewer respiratory complex subunits (e.g., ATP synthase) and may increase translocase levels of the outer and inner mitochondrial membranes to facilitate delivery of nucleus-encoded complex subunits. Respiratory complex assembly relies on mitochondrial cristae organizing system subunits that are altered in apoE4 cells, and apoE4 increases mitochondrial proteases that control respiratory subunit composition for complex assembly.  相似文献   

19.
Within the yeast mitochondrial ATP synthase, subunit h is a small nuclear encoded protein belonging to the so-called "peripheral stalk" that connects the enzyme catalytic F(1) component to the mitochondrial inner membrane. This study examines the role of subunit h in ATP synthase function and assembly using a regulatable, doxycycline-repressible subunit h gene to overcome the strong instability of the mtDNA previously observed in strains lacking the native subunit h gene. Yeast cells expressing less than 3% of subunit h, but still containing intact mitochondrial genomes, grew poorly on respiratory substrates because of a major impairment of ATP synthesis originating from the ATP synthase, whereas the respiratory chain complexes were not affected. The lack of ATP synthesis in the subunit h-depleted (deltah) mitochondria was attributed to defects in the assembly/stability of the ATP synthase. A main feature of deltah-mitochondria was a very low content (<6%) in the mitochondrially encoded Atp6p subunit, an essential component of the enzyme proton channel, which was in large part because of a slowing down in translation. Interestingly, depletion of subunit h resulted in dramatic changes in mitochondrial cristae morphology, which further supports the existence of a link between the ATP synthase and the folding/biogenesis of the inner mitochondrial membrane.  相似文献   

20.
Osmotic stress-related proteins in sugarcane were identified using proteomics approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Sugarcane settlings were subjected to osmotic stress in the nutrient solution containing 10% (w/v) PEG 6000 for 14 h. Total proteins were extracted from leaves, and separated by 2-DE. Four typical spots exhibited significant changes in PEG treatment compared to control, which were identified using MALDI-TOF-MS successfully. The drought inducible 22 kDa protein and Rubisco small subunit were up-regulated while isoflavone reductase-like (IRLs, related to antioxidant defense system) protein and delta chain of ATP synthase were down-regulated by the osmotic stress. Analysis of the results showed that the most differential proteins under osmotic stress were acidic, unstable and transmembrane proteins, enriched with hydrophobic amino acids such as leucine and alanine which are extremely important for structural stabilization of proteins by hydrophobic interaction. However, the drought inducible 22 kDa protein was a hydrophile and non-transmembrane protein enriched with glutamic acid. These results provide new insight into the part of regulatory mechanism of adaptations to osmotic stress through differential expression of specific proteins and implicate several previously unrecognized proteins to osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号