首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
倪阵  闻勤生  赵曙光  张哲  王景杰  王旭霞  刘震雄 《生物磁学》2013,(30):5829-5832,5873
目的:氧化应激和炎症反应是NASH进展的关键因素,同时二者之间存在着密切关系,而转录因子Nrf2和NF-kB分别是氧化应激和炎症信号通路的关键调控靶点,因此,研究Nrf2对高脂饮食诱导小鼠肝脏NF-kB信号通路的影响,对探讨NASH进展具有重要的意义。方法:雄性野生型(WT)和Nrf2基因敲除(Nrf2-/-)ICR小鼠各10只,随机分为WT对照组(Control)、Nrf2-/-对照组(KO)、WT高脂饮食组(HFD)和Nrf2-/-高脂饮食组(KOHFD)(n=5)。喂养8周后,观察肝脏光镜下改变,检测肝脏GSH、MDA、TNFα和IL-6水平。Western-Blot检测肝脏NF-kB蛋白表达水平,观察敲除Nrf2对肝脏NF-kB活性作用的影响。结果:1.光镜下观察,Control组与KO组小鼠肝脏结构无明显变化,HFD组小鼠肝脏呈现大片脂肪沉积和炎症细胞浸润,KOHFD组小鼠肝脏则呈现明显的大泡性变性,且炎症细胞浸润较HFD组明显加重;2.与Control组相比,KO组小鼠肝脏MDA轻度升高,GSH轻度降低,但无明显差异,而HFD组和KOHFD组小鼠肝脏MDA显著升高(P〈0.05),GSH显著降低(P〈0.05),且KOHFD组MDA明显高于HFD组(P〈0.05),GSH明显低于HFD组(P〈0.05)。3.ELISA结果显示,与Control组相比,KO组小鼠肝脏TNFα和IL-6分泌轻度增加,而HFD组和KOHFD组小鼠肝脏TNFα与IL-6水平显著升高(P〈0.05),且KOHFD组小鼠肝脏TNFα与IL-6显著高于HFD组(P〈0.05);4.Western-Blot结果显示,Control组和KO组之间无明显差异,而KOHFD组和HFD组小鼠肝脏胞核NF-kB蛋白表达水平显著升高,且KOHFD组高于HFD组。结论:敲除Nrf2可以显著加重高脂饮食诱导的小鼠肝脏氧化应激水平,进而促进NF-kB的活化,从而为通过以Nrf2为靶点治疗NASH提供重要的实验依据。  相似文献   

2.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

3.
高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征   总被引:34,自引:3,他引:34  
目的观察高脂喂养联合低剂量STZ注射的SpragueDawley(SD)大鼠2型糖尿病模型的代谢特征、病理学以及胰岛分子生物学变化。方法4周龄雄性SD大鼠36只随机分为三组(1)正常对照组(Control)9只,普通饲料喂养。(2)高脂组(HighFatchow,HE)9只,高脂饲料喂养,为普通饲料中添加20%脂肪(猪油和蛋黄粉各50%)和20%蔗糖。(3)糖尿病组(DM)18只。喂养4周后腹腔注射STZ(40mg/kg)。所有大鼠做灌胃葡萄糖耐量(OGTT)试验。放免法测定血清胰岛素,免疫组化染色观察胰岛β细胞的形态学特点,彩色图像分析系统测定胰岛素表达量,RT-PCR测定胰腺β细胞胰岛素mRNA表达水平。结果糖尿病大鼠空腹血糖(FBG)、胰岛素水平(FINS)显著高于Control组和HE组大鼠(P<0.01),空腹血清甘油三酯(TG)和游离脂肪酸(FFA)水平显著高于Control组(P<0.05);胰岛β细胞吸光度(A)显著低于高脂组大鼠(P<0.05),降低11.6%。胰岛素免疫反应阳性区占胰岛百分比显著低于Control组和HE组,分别下降31.9%(P<0.05)和43.1%(P<0.01)。胰岛素mRNA表达水平显著低于HE组(P<0.05)。STZ注射后48h(基线值)大鼠FBG水平的分布情况为A组(FBG<10.0mmol/L)占7/18;B组(FBG10~19.9mmol/L)占5/18;C组(FBG≥20mmol/L)占6/18。STZ注射后9d的OGTT结果与基线值相比,B组OGTT值总体变化最小,A组FBG的变异最大,达到25%。结论高脂喂养联合低剂量STZ注射的糖尿病大鼠模型模拟2型糖尿病发生的主要病理生理过程,具有高血糖、高胰岛素血症以及血脂异常等基本特征。  相似文献   

4.
高脂喂养合并小剂量链脲佐菌素建立2型糖尿病大鼠模型   总被引:7,自引:0,他引:7  
目的 观察不同配方的高脂饲料,以及不同周龄的大鼠对于该模型的造模成功率和模型病变特点的影响.方法 将26只3周龄SD大鼠分为正常一组(N1组)、模型一组(M1组)和模型二组(M2组);26只5周龄SD大鼠分为正常二组(N2组)、模型三组(M3组)和模型四组(M4组).M1组和M3组给予高脂饲料配方一喂养,M2组和M4组给予高脂饲料配方二喂养.4周后,各模型组大鼠腹腔注射STZ溶液35 mg/kg.连续观察大鼠的空腹血糖(FBG)、空腹胰岛素(FIN)、总胆固醇(TG)、甘油三酯(TC)水平.结果 5周龄SD大鼠的FBG水平在注射STZ后两周即可达到稳定状态,并维持在较高的水平;高脂饲料配方二使大鼠的进食量和体重增加明显,并且成功诱导出胰岛素抵抗( insulin resistance,IR).结论 选取5周龄SD大鼠作为模型动物,并给予配方二高脂饲料喂养,所建立的大鼠模型具备2型糖尿病的主要特征,是值得推广的2型糖尿病动物模型.  相似文献   

5.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20 mg/kg bwt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3 mg/kg bwt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimer’s type (SDAT).  相似文献   

6.
The generation of superoxide radicals, lipid peroxidation (as measured by malone dialdehyde formation) and the activity of selected antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase) were assessed in radish (Raphanus sativus L.), in response to elevated concentrations of copper ions in the culture medium in vitro and in vivo. Experiments were performed on 7-day-old seedlings and 5-week-old calluses grown on media supplemented with CuSO4 in concentrations of 10, 100 and 1000 μМ. The exposure to elevated Cu concentrations in the medium significantly reduced both callogenesis and the proliferation of radish calluses in vitro. Cu treatment resulted in the increased generation of the superoxide radical (O2) in radish seedlings and calluses indicating the occurrence of oxidative stress in radish cells, whereas the level of lipid peroxidation (LPO) remained unchanged. Both in calluses and in radish seedlings in vivo, the relative level of oxidative stress was maximal at micromolar Cu concentrations and became attenuated with increasing Cu concentrations. Stronger oxidative stress occurred in the radish seedlings in vivo, compared with radish calluses in vitro. The observed lower sensitivity of calluses to Cu-induced oxidative stress and their ability to proliferate upon exposure to Cu concentrations of up to 1000 μМ demonstrate the potential of in vitro cell-selection to obtain metal-tolerant radish plant lines.  相似文献   

7.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, β‐carotene, and α‐lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague‐Dawley rats, normal and streptozotocin‐induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, β‐carotene, pycnogenol + β‐carotene, or pycnogenol + β‐carotene + α‐lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with β‐carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) β‐carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:345–352, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20046  相似文献   

8.
Ethylene is a stress hormone involved in early senescence and abscission of vegetative and reproductive organs under stress conditions. Ethylene perception inhibitors can minimize the impact of ethylene-mediated stress. The effects of high temperature (HT) stress during flowering on ethylene production rate in leaf, flower and pod and the effects of ethylene inhibitor on ethylene production rate, oxidative damage and physiology of soybean are not understood. We hypothesize that HT stress induces ethylene production, which causes premature leaf senescence and flower and pod abscission, and that application of the ethylene perception inhibitor 1-Methyl cyclopropene (1-MCP) can minimize HT stress induced ethylene response in soybean. The objectives of this study were to (1) determine whether ethylene is produced in HT stress; (2) quantify the effects of HT stress and 1-MCP application on oxidative injury; and (3) evaluate the efficacy of 1-MCP at minimizing HT-stress-induced leaf senescence and flower abscission. Soybean plants were exposed to HT (38/28 °C) or optimum temperature (OT; 28/18 °C) for 14 d at flowering stage (R2). Plants at each temperature were treated with 1-MCP (1 μg L−1) gas for 5 h or left untreated (control). High temperature stress increased rate of ethylene production in leaves, flowers and pods, production of reactive oxygen species (ROS), membrane damage, and total soluble carbohydrate content in leaves and decreased photosynthetic rate, sucrose content, Fv/Fm ratio and antioxidant enzyme activities compared with OT. Foliar spray of 1-MCP decreased rate of ethylene production and ROS and leaf senescence traits but enhanced antioxidant enzyme activities (e.g. superoxide dismutase and catalase). In conclusion, HT stress increased ethylene production rates, caused oxidative damage, decreased antioxidant enzyme activity, caused premature leaf senescence, increased flower abscission and decreased pod set percentage. Application of 1-MCP lowered ethylene and ROS production, enhanced antioxidant enzyme activity, increased membrane stability, delayed leaf senescence, decreased flower abscission and increased pod set percentage. The beneficial effects of 1-MCP were greater under HT stress compared to OT in terms of decreased ethylene production, decreased ROS production, increased antioxidant protection, decreased flower abscission and increased pod set percentage.  相似文献   

9.
Gerbera jamesonii H. Bolus ex Hook (Family: Asteraceae) has been successfully acclimatized from temperate to subtropical North Indian plains of Lucknow through in vitro propagation. Flower heads were collected from greenhouse, segmented into 4–16 pieces and cultured in Murashige and Skoog’s medium (MS) (Physiol Plant 15:472–497, 1962) supplemented with 2.87 μM indole-3-acetic acid (IAA) and 8.88 μM N6-benzyladenine (BA) for shoot regeneration. Shoots were subcultured on growth regulator free MS medium. Apical shoot meristems from in vitro plantlets of gerbera were tested in MS medium with different combination of cytokinins [BA, kinetin, and thidiazuron (TDZ)] alongwith 2.68 μM 1-naphthaleneacetic acid (NAA) for shoot multiplication. The optimum results were obtained with 8.88 μM BA. Regenerated plants with well-established root system were transferred to pots containing soil and sand (1:1 v/v) and were kept in humidity chamber with 80–90% relative humidity for 0, 5, 10, 15, 20, and 25 days before they were transferred to field (during October, 2005 to February, 2006). Survival percentage was higher when regenerated plantlets were kept under humidity chamber for 15 days. An attempt was made to obtain basic information on different biochemical changes during acclimatization process of in vitro raised plantlets. Increased lipid peroxidation and high H2O2 content in early stages of acclimatization process reflected a similar process of oxidative stress. Our work suggests that tissue-cultured plants develop antioxidant enzymatic protective system which determine the ability to survive in oxidative stress and up regulation of these enzymes would help to reduce the built up of reactive oxygen species (ROS).  相似文献   

10.
Yang ES  Lee JH  Park JW 《Biochimie》2008,90(9):1316-1324
It has been reported that chronic alcohol administration increases peroxynitrite hepatotoxicity by enhancing concomitant production of nitric oxide and superoxide. Several studies have shown the importance of superoxide dismutase (SOD) in protecting cells against ethanol-induced oxidative stress. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. In this report, we demonstrate that ethanol induces the peroxynitrite-mediated cytotoxicity in HepG2 cells through inactivation of antioxidant enzymes such as ICDH and SOD. Upon exposure to 100mM ethanol for 3days to HepG2 cells, a significant decrease in the viability and activities of ICDH and SOD was observed. The ethanol-induced inactivation of antioxidant enzymes resulted in the cellular oxidative damage and modulation of redox status as well as mitochondrial dysfunction in HepG2 cells. The cytoxicity of ethanol and inactivation of antioxidant enzymes were effectively protected by manganeses(III) tetrakis(N-methyl-2-pyridyl) porphyrin, a manganese SOD mimetic, and N'-monomethyl-l-arginine, a nitric oxide synthase inhibitor. These results indicate that ethanol toxicity is mediated by peroxynitrite and the peroxynitrite-mediated damage to ICDH and SOD may be resulted in the perturbation of the cellular antioxidant defense systems and subsequently lead to a pro-oxidant condition.  相似文献   

11.
Exercise in thermally stressful environmental conditions can enhance oxidative stress. We sought to measure the plasma antioxidant defenses and cytokine response together with oxidative damage post-exercise in a temperate versus a hot environment. The plasma concentrations of vasoactive endothelin-1 and vascular angiogenic growth factor were also evaluated. Male athletes (n=9) volunteered to participate. The athletes randomly performed two bouts of treadmill exercise of 45 min at 75–80% of maximal oxygen uptake in a climatic-controlled chamber under two different conditions: temperate environment (10–12 °C, 40–55% humidity) and hot, humid environment (30–32 °C, 75–78% humidity). Venous blood samples were obtained immediately pre- and post-bout and on recovery after 2 h. Serum glucose, malondialdehyde and lactate concentrations were significantly increased post-exercise in hot but maintained in the temperate environment; these post-exercise values were significantly higher after exercise in hot than in temperate. Urinary 8-hydroxy-2′-deoxyguanosine concentration, plasma phosphocreatine kinase and catalase activities, creatinine and monocyte chemoattractant protein-1, and interleukin-6 significantly increased post-exercise in hot but maintained in temperate environment. The post-exercise circulating values of antioxidant enzyme paraoxonase-1 and endothelin were significantly higher in the hot than in temperate environment. Exercise in a hot and humid environment resulted in mild hyperthermia with elevated perceived exertion and thermal stress. Hyperthermic environment induced hyperglycemia, lactatecidemia and more cellular and oxidative damage than exercise in a temperate environment but also induced a post-exercise antioxidant and anti-inflammatory response in plasma. These results suggest that environmental temperature needs to be taken into account when evaluating exercise-related oxidative stress and inflammation.  相似文献   

12.
The effects of a rapid transfer from a low (3 °C) to a warm (23 °C) temperature on oxidative stress markers and antioxidant defenses were studied in the brain, liver and kidney of the goldfish, Carassius auratus. Cold-acclimated fish were acutely moved to 23 °C and sampled after 1, 6, 12, 24, 48 or 120 h of warm temperature exposure. Lipid peroxide levels increased quickly during the first few hours at 23 °C, but thiobarbituric acid-reactive substances changed little. Protein carbonyl content was reduced by 20–40% in the liver over the entire experimental course, but increased transiently in the kidney. The content of high-molecular mass thiols decreased by two-thirds in the brain and was affected slightly in other organs. By contrast, total low-molecular mass thiols (e.g. glutathione and others) increased transiently. Activities of the primary antioxidant enzymes—superoxide dismutase and catalase—were generally unaffected in goldfish organs, whereas glutathione-dependent enzymes were elevated in the brain and kidney after 24–48 h at 23 °C. Glutathione peroxidase increased by 1.5–2.3-fold and glutathione-S-transferase by 1.7-fold. Hence, a short-term exposure to warm temperature disturbed several oxidative stress markers, but only slightly affected the activities of antioxidant enzymes. However, comparison of the current data for cold-acclimated winter fish with the same parameters in summer fish suggests that longer exposure to high ambient temperature requires the enhancement of activities of glutathione-dependent enzymes for maintaining the steady-state levels lipid peroxidation and protein oxidation in goldfish tissues.  相似文献   

13.
实验性2型糖尿病心肌病大鼠模型的建立与评价   总被引:2,自引:1,他引:2  
目的建立和评价2型糖尿病心肌病(DC)大鼠模型,探究高糖脂饮食在模型建立中的作用。方法将雄性Wistar大鼠随机分成正常对照组、高糖脂饮食组和高糖脂负荷小剂量STZ组。高糖高脂膳食诱导11周负荷小剂量链脲佐菌素(STZ)(30 mg/kg)腹腔注射建立DC模型,并观察糖代谢、脂代谢和心功能的变化。结果①大鼠经高糖高脂饲料诱导4周后,与正常对照组相比,胆固醇(TCH)和甘油三酯(TG)均显著增高(P〈0.05),血糖值没有明显变化(P〉0.05)。②大鼠注射30 mg/kg STZ后72 h,血糖水平开始升高,继续以高糖高脂饲料喂养6周后,与正常对照组比较,高糖脂饮食组和高糖脂负荷小剂量STZ组大鼠TG、TCH维持高水平,差异有显著性(P〈0.05);高糖脂负荷小剂量STZ组大鼠血糖值持续高水平,与正常对照组差异有显著性(P〈0.001)。③心功能测量结果显示,高糖脂饮食组大鼠出现温和的心脏功能异常(左心室收缩压降低,左心室舒张末压升高);高糖脂负荷小剂量STZ组大鼠左心室收缩和舒张功能均出现异常(LVSP、每搏输出量、心排量降低,LVEDP、左心室最大舒张速率升高),但以舒张功能异常为主。结论大鼠高糖脂饮食诱导负荷小剂量STZ可建立类似临床症状的2型DC模型,高糖脂饮食在糖脂代谢紊乱和心脏功能损伤过程中有重要作用,结合糖、脂代谢指标和心脏功能指标可以有效简便评价糖尿病心肌病模型。  相似文献   

14.
It is believed that oxidative stress (OS) plays a central role in the pathogenesis of metabolic diseases like diabetes mellitus (DM) and its complications (like peripheral neuropathy) as well as in neurodegenerative disorders like sporadic Alzheimer’s disease (sAD). Representative experimental models of these diseases are streptozotocin (STZ)-induced diabetic rats and STZ-intracerebroventricularly (STZ-icv) treated rats, in which antioxidant capacity (AC) against peroxyl (ORAC-ROO ) and hydroxyl (ORAC-OH ) free radicals (FR) was measured in three different brain regions: the hippocampus (HPC), the cerebellum (CB), and the brain stem (BS) by means of oxygen radical absorbance capacity (ORAC) assay. In the brain of both STZ-induced diabetic and STZ-icv treated rats decreased AC has been found demonstrating regionally specific distribution. In the diabetic rats these abnormalities were not associated with the development of peripheral diabetic neuropathy (PDN). Also, these abnormalities were not prevented by the intracerebroventricularly (icv) pretreatment of glucose transport inhibitor 5–thio-d-glucose (TG) in the STZ-icv treated rats, suggesting different mechanism of STZ-induced central effects from those at the periphery. Similarities of the OS alterations in the brain of STZ-icv rats and humans with sAD could be useful in the search for the new drugs in the treatment of sAD that have antioxidant activity. In the STZ-induced diabetic animals the existence of PDN was tested by the paw pressure test, 3 weeks following the diabetes induction. Mechanical nociceptive thresholds were measured three times at 10–min intervals by applying increased pressure to the hind paw until the paw-withdrawal or overt struggling was elicited. Only those diabetic animals which demonstrated decreased withdrawal threshold values in comparison with the control non-diabetic animals (C) were considered to have developed the PDN. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

15.
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.  相似文献   

16.
The role of catalase in the antioxidant defense system was studied using transgenic mice [Tg(CAT)] harboring a human genomic clone containing the entire human CAT gene. Catalase activity was 2-fold higher in the tissues of hemizygous [Tg(CAT)(+/o)] mice and 3- to 4-fold higher in the tissues of homozygous [Tg(CAT)(+/+)] mice compared to wild type mice. The human CAT transgene was expressed in a tissue-specific pattern that was similar to the endogenous catalase gene. The levels of other major antioxidant enzymes were not altered in the tissues of the transgenic mice. Hepatocytes and fibroblasts from the Tg(CAT)(+/+) mice were more resistant to hydrogen peroxide-induced cell death but were more sensitive to paraquat and TNFalpha toxicity. Fibroblasts from the Tg(CAT)(+/+) mice showed reduced growth rate in culture without treatment and reduced colony-forming capability after gamma-irradiation compared to fibroblasts from wild type mice. In addition, the Tg(CAT)(+/+) animals were more sensitive to gamma-irradiation.  相似文献   

17.
Several studies suggest that extremely low-frequency magnetic fields (ELF-MFs) may enhance the free radical endogenous production. It is also well known that one of the unavoidable consequences of ageing is an overall oxidative stress-based decline in several physiological functions and in the general resistance to stressors. On the basis of these assumptions, the aim of this study was to establish whether the ageing process can increase susceptibility towards widely present ELF-MF-mediated pro-oxidative challenges. To this end, female Sprague-Dawley rats were continuously exposed to a sinusoidal 50Hz, 0.1mT magnetic field for 10 days. Treatment-induced changes in the major antioxidant protection systems and in the neurotrophic support were investigated, as a function of the age of the subjects. All analyses were performed in brain cortices, due to the high susceptibility of neuronal cells to oxidative injury. Our results indicated that ELF-MF exposure significantly affects anti-oxidative capability, both in young and aged animals, although in opposite ways. Indeed, exposed young individuals enhanced their neurotrophic signalling and anti-oxidative enzymatic defence against a possible ELF-MF-mediated increase in oxygen radical species. In contrast, aged subjects were not capable of increasing their defences in response to ELF-MF treatment but, on the contrary, they underwent a significant decrease in the major antioxidant enzymatic activities. In conclusion, our data seem to suggest that the exposure to ELF-MFs may act as a risk factor for the occurrence of oxidative stress-based nervous system pathologies associated with ageing.  相似文献   

18.
Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. Oxidative damage and antioxidant properties have been studied in liver and gills of the European bullhead (Cottus gobio) subjected to cadmium (CdCl(2) at nominal concentrations of 0.01 and 1mg/L) for 4 days at either 15°C or 21°C. First, exposure to 1mg Cd/L induced a high mortality rate (67%) in fish held at 21°C. Regarding the antioxidant enzymes, exposure to 0.01 mg Cd/L significantly increased the activity of superoxide dismutase (SOD) and decreased the activity of glutathione reductase (GR) in liver, independently of heat stress. In gills, exposure to 21°C resulted in a significantly increased activity of glutathione peroxidase (GPx), whereas the activity of glutathione S-transferase (GST) was significantly reduced as compared to fish exposed to 15°C. Furthermore, regardless of Cd stress, exposure to elevated temperature resulted in a significant decrease of lipid peroxidation (LPO) level in liver and in a significant increase in the activity of chymotrypsin-like 20S proteasome in both studied tissues of C. gobio. Overall, the present results indicated that elevated temperature and cadmium exposure independently influenced the antioxidant defense system in bullhead with clear tissue-specific and stress-specific antioxidant responses. Further, elevated temperature affected the hepatic lipid peroxidation and the activity of 20S proteasome in both tissues.  相似文献   

19.
20.
We studied the effect of chronic caffeine on parameters related to oxidative stress in different brain regions of stressed and non-stressed rats. Wistar rats were divided into three groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated restraint stress during 40 days). Lipid peroxide levels and the total radical-trapping potential were assessed, as well as antioxidant enzyme activities superoxide dismutase, gluthatione peroxidase, and catalase in hippocampus, striatum and cerebral cortex. Results showed interactions between stress and caffeine, especially in the cerebral cortex, since caffeine increased the activity of some antioxidant enzymes, but not in stressed animals. We concluded that chronic administration of caffeine led, in some cases, to increased activity of antioxidant enzymes. However, these effects were not observed in the stressed animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号