首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anti-angiogenic activity of AGM-1470, a new synthetic analog of fumagillin isolated from Aspergillus fumigatus, was extensively examined both in vitro and in vivo using four different types of assay and compared to that of the fumagillin parent. Locally administered AGM-1470 inhibited the angiogenesis in the chick embryo chorioallantoic membrane assay and the rat corneal assay. In the rat sponge implantation assay, systemically administered AGM-1470 inhibited angiogenesis induced by basic fibroblast growth factor. Furthermore, in the rat blood vessel organ culture assay, AGM-1470 (1-1,000 ng/ml) was found to selectively inhibit the capillary-like tube formation of endothelial cells with a minimal effect on the non-endothelial cell growth. AGM-1470 showed more potent anti-angiogenic activity and less toxicity than the fumagillin parent. Therefore, AGM-1470 is much better than the fumagillin parent as anti-angiogenic compound.  相似文献   

2.
Molecular mechanisms of anti-angiogenic effect of curcumin   总被引:24,自引:0,他引:24  
Modulation of pathological angiogenesis by curcumin (diferuloylmethane), the active principle of turmeric, seems to be an important possibility meriting mechanistic investigations. In this report, we have studied the effect of curcumin on the growth of Ehrlich ascites tumor cells and endothelial cells in vitro. Further, regulation of tumor angiogenesis by modulation of angiogenic ligands and their receptor gene expression in tumor and endothelial cells, respectively, by curcumin was investigated. Curcumin, when injected intraperitoneally (i.p) into mice, effectively decreased the formation of ascites fluid by 66% in EAT bearing mice in vivo. Reduction in the number of EAT cells and human umbelical vein endothelial cells (HUVECs) in vitro by curcumin, without being cytotoxic to these cells, is attributed to induction of apoptosis by curcumin, as is evident by an increase in cells with fractional DNA content seen in our results on FACS analysis. However, curcumin had no effect on the growth of NIH3T3 cells. Curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in two in vivo angiogenesis assay systems, viz. peritoneal angiogenesis and chorioallantoic membrane assay. The angioinhibitory effect of curcumin in vivo was corroborated by the results on down-regulation of the expression of proangiogenic genes, in EAT, NIH3T3, and endothelial cells by curcumin. Our results on Northern blot analysis clearly indicated a time-dependent (0-24h) inhibition by curcumin of VEGF, angiopoietin 1 and 2 gene expression in EAT cells, VEGF and angiopoietin 1 gene expression in NIH3T3 cells, and KDR gene expression in HUVECs. Further, decreased VEGF levels in conditioned media from cells treated with various doses of curcumin (1 microM-1mM) for various time periods (0-24h) confirm its angioinhibitory action at the level of gene expression. Because of its non-toxic nature, curcumin could be further developed to treat chronic diseases that are associated with extensive neovascularization.  相似文献   

3.
Traditional Chinese medicinal herbs are a rich source of compounds with reported anti-inflammatory and anti-carcinogenic effects. Growing evidence shows the codependence of chronic inflammation and angiogenesis, and the potential benefits of targeting angiogenesis in the treatment of chronic inflammation and targeting inflammation in the treatment of diseases with impaired angiogenesis. We hypothesized that the anti-inflammatory activity of the natural compounds may owe at least some of its efficacy to their anti-angiogenic activity and hence we investigated the anti-angiogenic activity of these compounds in vivo in zebrafish embryos and in vitro in human umbilical vein endothelial cells (HUVECs). Nobiletin, a polymethoxylated flavonoid from citrus fruits, showed anti-angiogenic activity in both assays. Nobiletin inhibited the formation of intersegmental vessels (ISVs) in live transgenic zebrafish embryos expressing green fluorescent protein (GFP) in the vasculature. Cell cycle analysis of dissociated zebrafish embryo cells showed that nobiletin induced G0/G1 phase accumulation in a dose-dependent manner in GFP-positive endothelial cells. Nobiletin also dose-dependently induced VEGF-A mRNA expression. In HUVECs, nobiletin inhibited endothelial cell proliferation and, to a greater extent, tube formation in a dose-dependent manner. As in the in vivo study, nobiletin induced G0/G1 cell cycle arrest in HUVECs. However, this arrest was not accompanied by an increase in apoptosis, indicating a cytostatic effect of nobiletin. This study, for the first time, identifies nobiletin as having potent anti-angiogenic activity and suggests that nobiletin has a great potential for future research and development as a cytostatic anti-proliferative agent.  相似文献   

4.
3-O-Acetyloleanolic acid, a pentacyclic triterpenoid isolated from cowpea seeds, inhibited proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. HUVECs. The induced apoptosis was characterized by detection of cell surface annexin V and sub-G1 populations. The number of cells immunostained with annexin V-fluorescein isothiocyanate increased after treatment with 3-O-acetyloleanolic acid. The sub-G1 cell populations were also increased in treated HUVECs. 3-O-Acetyloleanolic acid induced activation of caspase 3, a critical mediator of apoptosis signaling. It also significantly inhibited angiogenesis in an in vivo Matrigel plug assay. 3-O-Acetyloleanolic acid thus exhibits anti-angiogenic effects and induces apoptosis in HUVECs and the results suggest that it has a potential use for suppression of the tumor growth stimulated by angiogenesis.  相似文献   

5.
Ursolic acid (UA) is a pentacyclic triterpene naturally occurring in many plant foods. In the present study, we investigated anti-cancer activity of UA in vivo in Ehrlich ascites carcinoma (EAC) tumor. 15 × 106 EAC cells were implanted intraperitoneally (i.p., ascitic tumor) and subcutaneous (s.c., solid tumor) in Swiss albino mice. Mice with established tumors received UA i.p. at 25, 50 and 100 mg/kg bw for 14 d in ascitic and 100 mg/kg bw in solid tumor for 30 d. On day 15, blood samples were collected for hematological assessment of hemoglobin (Hb%), RBCs, WBCs and PCV. Tumor volume, cell viability, angiogenic, anti-angiogenic, anti-inflammatory factors and antioxidant parameters were determined. Immunohistochemistry analysis for VEGF, iNOS, CD31, caspase-3 and Bax were also performed. UA significantly inhibited tumor growth, cell viability, in both ascites and solid tumor model in vivo (p < 0·001). The anti-angiogenic effects were accompanied with decreased VEGF, iNOS, TNF-α and increased IL-12 levels. UA at 100 mg/kg bw dose significantly increased SOD and CAT activity (p < 0.01). GSH and TBARS were increased as compared to control group (p < 0.001). Furthermore, UA increased total RBCs, WBCs as well as Hb% significantly (p < 0.05) compared to cyclophosphamide (CP). Histopathological examination of tumor cells in the treated group demonstrated signs of apoptosis with chromatin condensation and cell shrinkage. Decreased peritoneal angiogenesis showed the anti-angiogenic potential. UA downregulated VEGF & iNOS expression whereas bax and caspase-3 expressions were upregulated suggesting drug induced tumor cell apoptosis through activating the pro-apoptotic bcl-2 family and caspase-3 and downregulation of VEGF. The present study sheds light on the potent antitumor property of the UA and can be extended further to develop therapeutic protocols for treatment of cancer.  相似文献   

6.
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.  相似文献   

7.
The carotenoid lycopene has been reported to possess anti-metastatic activity which may be associated with immunomodulation. However, the anti-angiogenic effects and mechanisms of action of lycopene have not been reported. In this study, we investigated the immunomodulatory effect on in vitro and ex vivo angiogenesis of lycopene. We found that the proliferation, migration and the matrigel tube formation of human umbilical vein endothelial cells (HUVECs) was remarkably inhibited by conditioned medium (CM) of human peripheral blood mononuclear cells (MNC-CM) stimulated with various dose (1-10 μmol/L) of lycopene (LP-MNC-CM). LP-MNC-CM treatment inhibited ex vivo angiogenesis, as revealed by chicken egg chorioallantoic membrane assay. We further examined the effects of lycopene stimulation on cytokine levels in MNC and showed that, as compared to the control, lycopene (10 μmol/L) significantly (P<.001) up-regulated interleukin (IL)-12 by 163% and interferon (IFN)-γ by 531%. Furthermore, pre-treatment of HUVECs with dexamethasone, an IL-12 inhibitor, blocked the anti-angiogenic effects of LP-MNC-CM in parallel with inhibition of IL-12 and IFN-γ induction in MNC. These results demonstrate that lycopene has a potent anti-angiogenic effect and that these effect may be associated with its up-regulation of IL-12 and IFN-γ.  相似文献   

8.
In the present study, four novel dienone cyclopropoxy curcumin analogs 1a–4a were synthesized by nucleophillic substitution reaction with cyclopropyl bromide. The tumor inhibitory and anti-angiogenic effects of the synthetic compounds were studied on mouse Ehrlich ascites tumor (EAT) in vivo. The compounds 1a–4a increased the life span (% ILS) of EAT bearing mice with corresponding significant reduction in ascites volume and cell number and induced apoptotic bodies in EAT cells. Anti-angiogenic studies of the compounds demonstrated significant reduction of microvessel density (MVD) in the peritoneum wall sections of mice and induced avascular zone in CAM model. Our findings demonstrate that the tumor growth inhibitory effects of synthetic dienone cyclopropoxy curcumin analogs 1a–4a could be mediated by promoting apoptosis and inhibiting tumor angiogenesis. However, the compounds need to be explored further to assess its clinical relevance.  相似文献   

9.
Cotton, a staple fiber that grows around the seeds of the cotton plants (Gossypium), is produced throughout the world, and its by products, such as cotton fibers, cotton-seed oil, and cottonseed proteins, have a variety of applications. Cotton-seed contains gossypol, a natural phenol compound. (±)-Gossypol is a yellowish polyphenol that is derived from different parts of the cotton plant and contains potent anticancer properties. Tumor growth and metastasis are mainly related to angiogenesis; therefore, anti-angiogenic therapy targets the new blood vessels that provide oxygen and nutrients to actively proliferating tumor cells. The aim of the present study was to evaluate the anti-angiogenic potential of (±)-gossypol in vitro. (±)-Gossypol has anti-proliferative effects on cancer cell lines; however, its anti-angiogenic effects on normal cells have not been studied. Anti-proliferative activities of gossypol assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, anti-angiogenic activities using tube formation assay, and cell migration inhibition capability using a wound-healing assay on human umbilical vein endothelial cells (HUVECs) were revealed. (±)-Gossypol displayed the following potent anti-angiogenic activities in vitro: it inhibited the cell viability of HUVECs, it inhibited the migration of HUVECs, and disrupted endothelial tube formation in a dose-dependent manner. In addition, the anti-angiogenic effects of (±)-gossypol were investigated in ovo in a model using a chick chorioallantoic membrane (CAM). Decreases in capillary density were assessed and scored. (±)-Gossypol showed dose-dependent anti-angiogenic effects on CAM. These findings suggest that (±)-gossypol can be used as a new anti-angiogenic agent.  相似文献   

10.
Tumor growth is associated with angiogenesis and inflammation and the endogenous lipid, platelet activating factor (PAF), is a pro-inflammatory and pro-angiogenic mediator. We therefore measured tumor growth, angiogenesis and inflammation in normal (WT) mice and those lacking the receptor for PAF, through gene deletion (PAFR-KO). Growth of solid tumors derived from colon 26 cells was not altered but that from Ehrlich cells was markedly (5-fold) increased in the PAFR-KO mice, relative to the WT strain. Angiogenesis, as tumor content of VEGF or hemoglobin, was increased in both tumors from the mutant strain. Inflammation, as neutrophil and macrophage accumulation and chemokine (CXCL2 and CCL2) content of tumors, was decreased or unchanged in the tumors implying an overall decrease in the inflammatory response in the PAFR-KO strain. We also assessed growth of the Ehrlich tumor in its ascites form, after i.p. injection. Here growth (ascites volume) was inhibited by about 30%, but neutrophil and macrophage numbers were increased in the ascites fluid from the PAFR-KO mice. Angiogenesis in the peritoneal wall, which is not invaded by the tumor cells, was increased but leukocyte infiltration decreased in the mutant strain. Our results show, unexpectedly, that tumor-induced angiogenesis was increased in mice lacking response to PAF, from which we infer that in normal (WT) mice, PAF is anti-angiogenic. Further, although growth was still associated with angiogenesis in PAFR-KO mice, growth was not correlated with inflammation (leukocyte accumulation).  相似文献   

11.
Angiogenesis is crucial for tumor metastasis, with many compounds that inhibit tumor metastasis acting through suppression of angiogenesis. We investigated anti-angiogenic properties of Ligustrazine in a series of in vitro and in vivo models. Ligustrazine inhibited VEGF-induced HUVECs migration and tube formation in a dose-dependent manner in vitro, and had limited cytotoxicity to HUVECs and normal fibroblasts even at a dose up to 100 μg/ml. Ligustrazine also suppressed VEGF-induced rat aortic ring sprouting dose-dependently. Invivo, Ligustrazine reduced the Hb content in a Matrigel plug implanted in mice and inhibited new vessel formation in CAM. In addition, in a B16F10 spontaneous metastasis model, Ligustrazine decreased the expression of CD34 and VEGF in primary tumor tissue and reduced the number of metastasis nodi on the lung surface. Our data suggests that Ligustrazine may inhibit tumor metastasis, at least in part, through its anti-angiogenic activity.  相似文献   

12.
13.
Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate Ecteinascidia turbinata, has been shown to have antitumor effects. In this study, we assessed the possible anti-angiogenic effects of trabectedin on human umbilical vein endothelial cells (HUVECs) and breast cancer cell lines. An XTT cell viability assay was used to determine cytotoxicity. A scratch assay was used to detect the migration of cells after trabectedin treatment. Angiogenic cytokine profiles of breast cancer cell lines, before and after treatment with trabectedin, were investigated using an angiogenesis antibody array. Changes in mRNA expression levels of VEGF were evaluated using qRT-PCR. Trabectedin inhibited the viability of HUVECs and breast cancer cells in a concentration- and time-dependent manner. The migration of both HUVECs and breast cancer cells was suppressed by trabectedin treatment. Angiogenic cytokines which are known to regulate tumorigenicity and angiogenesis, such as GM-CSF, IGFBP-2, VEGF, and uPA, were inhibited, while several anti-angiogenic cytokines such as TIMP-1 and Serpin E1were induced in breast cancer cells. Furthermore, expression levels of VEGF mRNA were inhibited in all breast cancer cells tested. Although additional studies are needed to elucidate the molecular mechanisms underlying the anti-angiogenic activity of trabectedin, our results suggest that trabectedin may act as a potential anti-angiogenic agent in breast cancer cells.  相似文献   

14.
Angiogenesis, the formation of new blood vessels from pre-existing ones, plays a critical role in normal and pathological phenotypes, including solid tumor growth and metastasis. Accordingly, the development of new anti-angiogenic agents is considered an efficient strategy for the treatment of cancer and other human diseases linked with angiogenesis. We have identified voacangine, isolated from Voacanga africana, as a novel anti-angiogenic agent. Voacangine inhibits the proliferation of HUVECs at an IC(50) of 18 μM with no cytotoxic effects. Voacangine significantly suppressed in vitro angiogenesis, such as VEGF-induced tube formation and chemoinvasion. Moreover, the compound inhibits in vivo angiogenesis in the chorioallantoic membrane at non-toxic doses. In addition, voacangine decreased the expression levels of hypoxia inducible factor-1α and its target gene, VEGF, in a dose-dependent manner. Taken together, these results suggest that the naturally occurring compound, voacangine, is a novel anti-angiogenic compound.  相似文献   

15.
VEGF is an important mediator of pathological angiogenesis in the eye and is a target for the development of novel anti-angiogenic molecules. In a previous study we identified 12-amino acid peptides derived from exon 6 of VEGF that inhibited VEGF binding to its receptors in HUVECs, endothelial cell functions, and in vitro angiogenesis. Screening of a series of truncated peptides corresponding to the inhibitory region of exon 6 identified a seven amino acid residue peptide, RKRKKSR, as the minimum exon 6-encoded sequence which retains the ability to inhibit VEGF receptor binding and angiogenesis in vitro. The effect of the seven-residue peptide was examined in a mouse model of ischaemic retinal neovascularisation. Administration of the peptide caused a 50% inhibition of retinal neovascularisation and was as effective in inhibiting ischaemic angiogenesis as soluble Flt-1 adenovirus. These results demonstrate that a seven amino acid VEGF exon 6-derived peptide is an effective inhibitor of ocular neovascularisation in vivo, and may have applications in the treatment of pathophysiological ocular neovascularisation in human disease.  相似文献   

16.
BackgroundCyperenoic acid, one of the main chemical constituents of the root of Croton crassifolius, exhibited potent anti-angiogenic property on the zebrafish embryo model with little cytotoxicity. Nevertheless, its anti-angiogenic mechanism and anti-tumor effect have not been investigated.PurposeTo investigate the anti-angiogenic mechanisms of cyperenoic acid and evaluate it whether could exert anti-tumor effect by inhibiting angiogenesis.Study designTargeting vascular endothelial growth factor receptor-2 (VEGFR2) pathway to inhibit tumor angiogenesis is a significant strategy for cancer treatment. Initially, the anti-angiogenic effect of cyperenoic acid as well as the mechanisms of the action was studied using both in-vitro and in-vivo methodologies. Then, its anti-tumor effect through anti-angiogenesis by attenuating VEGFR2 signaling pathway was evaluated.MethodsThe in-vitro inhibitory effect of cyperenoic acid on the vascular endothelial growth factor (VEGF)-induced angiogenesis was evaluated using human umbilical vein endothelial cells (HUVECs) model. Moreover, its ex-vivo and in-vivo effects were evaluated using the aortic ring assay and the matrigel plug assay. The influence of the cyperenoic acid on tyrosine phosphorylation of VEGFR2 was studied by western blotting assay and the influence on downstream signaling pathway of VEGFR2 also be detected. Computer-docking simulations were carried out to study the interaction between cyperenoic acid and VEGFR2. Finally, its inhibitory effect on tumor growth was studied using breast cancer xenograft model.ResultsCyperenoic acid possessed little toxicity to HUVECs, but it significantly inhibited VEGF-induced proliferation, invasion, migration and tube formation of HUVECs. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Further mechanistic study showed that cyperenoic acid could suppress VEGFR2 tyrosine kinase activity and alter its downstream signaling pathways in VEGF-induced HUVECs. In addition, it could form two hydrogen bonds with the ATP binding pocket of the VEGFR2 kinase domain by docking. For breast cancer xenograft model, cyperenoic acid suppressed tumor growth, but no obvious toxic pathologic changes were observed in mice. Besides, it suppressed the phosphorylation of VEGFR2 in tumor, demonstrating its anti-angiogenic ability in vivo partly targeting the VEGFR2.ConlusionCyperenoic acid could exert anti-tumor effect in breast cancer by inhibiting angiogenesis via VEGFR2 signaling pathway.  相似文献   

17.
Liu F  Wang J  Chang AK  Liu B  Yang L  Li Q  Wang P  Zou X 《Phytomedicine》2012,19(8-9):797-803
In recent years, anti-angiogenic therapy has become an effective strategy for inhibiting tumor growth. Fucoidan is a class of fucose-enriched sulfated polysaccharides found in brown algae, and it is known to have strong anti-tumor property. Using a human umbilical vein endothelial cells (HUVEC)-based cell culture model, the present study investigated the anti-angiogenic activity of fucoidan extracted from the brown seaweed Undaria pinnatifida. Treatment of HUVECs with various concentrations of fucoidan resulted in significant inhibition of cell proliferation, cell migration, tube formation and vascular network formation. However, significant inhibition of cell proliferation only occurred with longer treatment time (48 h instead of 24h or less). About 40% of cell proliferation and cell migration and 61% of tube formation by HUVECs were inhibited by 400 μg/ml fucoidan, the maximum concentration tested. These results appeared to suggest that modulation of angiogenesis by fucoidan might not occur through growth inhibition and apoptosis. Ex vivo angiogenesis assay demonstrated that at 100 μg/ml, fucoidan caused significant reduction in microvessel outgrowth. Western blot and RT-PCR analyses indicated that at 400 μg/ml, fucoidan significantly reduced the expression of the angiogenesis factor VEGF-A in the suppression of angiogenesis activity. Our results showed that fucoidan isolated from U. pinnatifida may have a new therapeutic potential in the prevention angiogenesis-related diseases.  相似文献   

18.
Apolipoprotein(a) [apo(a)] contains the largest numbers of kringle domains identified to date. Of these, apo(a) kringle V shows significant sequence homology with plasminogen kringle 5, which is reported to be a potent angiogenesis inhibitor. To determine the effects of apo(a) kringle V on angiogenesis, it was expressed as a soluble protein (termed rhLK8) in Pichia pastoris and its in vitro and in vivo anti-angiogenic properties were examined. rhLK8 inhibited the migration of human umbilical vein endothelial cells in vitro in a dose-dependent manner. This function was associated with the down-regulation of the activation of focal adhesion kinase and the inhibition of the consequent formation of actin stress fibers/focal adhesions. rhLK8 also inhibited new capillary formation in vivo, as assessed by the chick chorioallantoic membrane assay and the Matrigel plug assay. These results indicate that rhLK8 may be an effective angiogenesis inhibitor both in vitro and in vivo.  相似文献   

19.
20.
Tumor cells intensely utilize glutamine as the major source of respiratory fuel. Glutamine-analogue acivicin inhibits tumor growth and tumor-induced angiogenesis in Ehrlich ascites carcinoma. In the present study, antitumor properties of acivicin in combination with glutaminase enzyme is reported. Acivicin along with E. coli glutaminase synergistically reduced in vitro proliferation and matrigel invasion of human MCF-7 and OAW-42 cells. Effects of single and combined treatments with acivicin and glutaminase on angiogenic factors were also analyzed in these cell lines. Co-administration of the treatment agents inhibits the release of VEGF and MMP-9 by cells in culture supernatant significantly than single agent treatments. The result suggests that combination of acivicin with glutaminase may provide a better therapeutic option than either of them given separately for treating human breast and ovarian cancer. However, further studies are required to be conducted in vivo for its confirmation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号