首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin (diferuloylmethane), the yellow pigment of turmeric, is one of the most commonly used and extensively studied phytochemicals due to its pleiotropic effects in several human cancers. In the current study, the therapeutic efficacy of curcumin was investigated in human colorectal carcinoma HCT-15 cells. Curcumin inhibited HCT-15 cells proliferation and induced apoptosis in a dose- and time-dependent manner. Hoechst 33342 and DCFHDA staining revealed morphological and biochemical features of apoptosis as well as ROS generation in HCT-15 cells treated with 30 and 50 μM curcumin. Over-expression of pre-mRNA processing factor 4B (Prp4B) and p53 mutations have been reported as hallmarks of cancer cells. Western blot analysis revealed that curcumin treatment activated caspase-3 and decreased expression of p53 and Prp4B in a time-dependent manner. Transfection of HCT-15 cells with Prp4B clone perturbed the growth inhibition induced by 30 μM curcumin. Fractionation of cells revealed increased accumulation of Prp4B in the nucleus, following its translocation from the cytoplasm. To further evaluate the underlying mechanism and survival effect of Prp4B, we generated siRNA-Prp4B HCT15 clones. Knockdown of Prp4B with siRNA diminished the protective effects of Prp4B against curcumin-induced apoptosis. These results suggest a possible underlying molecular mechanism in which Prp4B over-expression and activity are closely associated with the survival and regulation of apoptotic events in human colon cancer HCT-15 cells.  相似文献   

2.
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to (56)Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/μm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET (56)Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in (56)Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after (56)Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.  相似文献   

3.
Lee JH  Park JW 《Free radical research》2005,39(12):1325-1333
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. alpha-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP+ +NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

4.
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. α-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP++NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

5.
Phosphatidylinositide 3-kinase/AKT in radiation responses   总被引:2,自引:0,他引:2  
  相似文献   

6.
The intestinal epithelium is sensitive to radiation injury. Damage to the intestinal epithelium is dose limiting in radiation therapy of abdominal cancers. There is a need for agents that can be given before radiation therapy to protect the intestinal epithelium. C57BL6 mice were subjected to 12 Gy of total body radiation. Some mice received intraperitoneal hyaluronic acid (HA) before radiation. Mice were killed 6 h after radiation to assess radiation-induced apoptosis in the intestine; other mice were killed at 84 h to assess crypt survival. Total body radiation (12 Gy) resulted in increased expression of HA synthases and HA in the intestine and increased plasma HA (5-fold). Intraperitoneal injection of HA (30 mg/kg) before radiation resulted in a 1.8-fold increase in intestinal crypt survival and a decrease in radiation-induced apoptosis. The radioprotective effects of HA were not seen in Toll-like receptor 4 (TLR4)- or cyclooxygenase-2 (COX-2)-deficient mice. Intraperitoneal injection of HA induced a 1.5-fold increase in intestinal COX-2 expression, a 1.5-fold increase in intestinal PGE?, and the migration of COX-2-expressing mesenchymal stem cells from the lamina propria in the villi to the lamina propria near the crypt. We conclude that 1) radiation induces increased HA expression through inducing HA synthases, 2) intraperitoneal HA given before radiation reduces radiation-induced apoptosis and increases crypt survival, and 3) these radioprotective effects are mediated through TLR4, COX-2, and the migration of COX-2-expressing mesenchymal stem cells.  相似文献   

7.
Lemay, A-M. and Haston, C. K. Radiation-Induced Lung Response of AcB/BcA Recombinant Congenic Mice. Radiat. Res. 170, 299-306 (2008).The genetic factors that influence the development of radiotherapy-induced lung disease are largely unknown. Herein we identified a strain difference in lung response to radiation wherein A/J mice developed alveolitis with increased levels of pulmonary mast cells and cells in bronchoalveolar lavage while the phenotype in C57BL/6J mice was fibrosis with fewer inflammatory cells. To identify genomic loci that may influence these phenotypes, we assessed recombinant congenic (RC) mice derived from the A/J and C57BL/6J strains for their propensity to develop alveolitis or fibrosis after 18 Gy whole-thorax irradiation. Mouse survival, lung histopathology and bronchoalveolar lavage cell types were recorded. Informative strains for each of mast cell influx, bronchoalveolar cell numbers, alveolitis and fibrosis were identified. In mice with the A/J strain background, the severity of alveolitis correlated with increased mast cell numbers while in C57BL/6J background strain mice fibrosis was correlated with the percentage of neutrophils in lavage. The data for RC mice support the association of specific inflammatory cells with the development of radiation-induced lung disease and provide informative strains with which to dissect the genetic basis of these complex traits.  相似文献   

8.
Curcumin, traditionally used as food and medicinal purposes, has recently been reported to have protective efficacy against hypoxia. Hypoxia is one of the important reactive factors in tumor metastasis, which is a key problem in clinical thyroid cancer therapy. In present study, we investigate the anti-metastatic effect of curcumin on the K1 papillary thyroid cancer cells as well as its potential mechanisms. The results show that curcumin effectively inhibits hypoxia-induced reactive oxygen species (ROS) upregulation and significantly decreases the mRNA and protein expression levels of hypoxia-inducible factor-1α (HIF-1α) in K1 cells. Curcumin also decreases the DNA binding ability of HIF-1α to hypoxia response element (HRE). Furthermore, curcumin enhances E-cadherin expression, inhibits metalloproteinase-9 (MMP-9) enzyme activity, and weakens K1 cells migration under hypoxic conditions. In summary, these results indicate that curcumin possesses a potent anti-metastatic effect and might be an effective tumoristatic agent for the treatment of aggressive papillary thyroid cancers.  相似文献   

9.
Jeong MH  Jin YH  Kang EY  Jo WS  Park HT  Lee JD  Yoo YJ  Jeong SJ 《Cell research》2004,14(4):295-302
Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML) cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization (SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression ofTK1 mRNA and TK 1 enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition, the expression of cell cycle-related proteins, cyclin A and cyclin B 1, provided the evidences of G I/S progression and G2-arrest, and their relationship with TKI in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells.  相似文献   

10.
Ionizing radiation (IR) leads to oxidizing events such as excessive reactive oxygen species (ROS) in the exposed cells, resulting in further oxidative damage to lipids, proteins and DNA. To screen the potential radio-protective drug, the intracellular ROS was measured in irradiated U937 cells pretreated with 80 candidate traditional herbal medicine, respectively. Isofraxidin (IF) was one possible radio-protector in these 80 drugs. This study investigated the radio-protective role of IF, a Coumarin compound, in human leukemia cell lines, for the first time. Results indicate that IF protects against IR-induced apoptosis in U937 cells in the time- and concentration- dependent manner. IF decreases IR-induced intracellular ROS generation, especially hydroxyl radicals formation, inhibits IR-induced mitochondrial membrane potential loss and reduces IR-induced high intracellular Ca2+ levels regardless of ER stress. IF down-regulates the expression of caspase-3, phospho-JNK, phospho-p38 and activates Bax in mitochondria. IF inhibits cytochrome c release from mitochondria to cytosol. IF also moderates IR-induced Fas externalization and caspase-8 activation. IF also exhibits significant protection against IR-induced cell death in other leukemia cell lines such as Molt-4 cells and HL60 cells regardless of p53. Taken together, the data demonstrate that IF protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.  相似文献   

11.
The aim of this study was to determine the effects of total-body irradiation of mice on the acute release of a panel of several mediators of inflammation and to evaluate the efficacy of Il4 in regulating these radiation-induced modifications. We studied the effects of exposure of C57BL6/J mice to 8 Gy gamma rays on the early release of cytokines, chemokines, acute-phase proteins, prostaglandins and corticosterone in either plasma or tissues compared to those observed after intraperitoneal injection of lipopolysaccharide from 1 h to 3 days after stimulation. During the characterization of the acute inflammatory response induced by radiation or lipopolysaccharide, we observed differences both in the type of mediators produced and in the time course of release. We next determined the anti-inflammatory potential of Il4 in this model of total-body irradiation. We found that Il4 was able to down-regulate the radiation-induced production of mediators of inflammation such as Gro1 (also known as KC, N51) in plasma and lung, corticosterone in blood, Il1b in lung, and prostaglandin E(2) in colon, suggesting the anti-inflammatory potential of Il4 in regulating the radiation-induced response.  相似文献   

12.
Withaferin A (Wit A), a natural compound derived from the medicinal plant Withania somnifera, has been reported for the anti-tumor effects, including the inhibition of tumor cell growth, metastasis and angiogenesis. In this study, we investigated the effect of Wit A on radiation-induced apoptosis in human renal cancer cells (Caki cells). Our results showed that, compared with Wit A or radiation alone, the combination of both resulted in a significant enhancement of apoptosis, showing the increase in the cleavage of caspase-3 and PARP as well as sub-G1 cell population. In addition, reactive oxygen species (ROS) generation was correlated with the enhancement of radiation-induced apoptosis by Wit A. Wit A downregulated Bcl-2 protein levels and ectopic expression of Bcl-2 in Caki cells attenuated the apoptosis induced by Wit A plus radiation. Taken together, these results indicate that Wit A enhanced radiation-induced apoptosis in Caki cells through ROS generation, down-regulation of Bcl-2 and Akt dephosphorylation. Thus, our study shows that Wit A may be used as an effective radiosensitizer in cancer therapy.  相似文献   

13.
Ionizing radiation is an effective means of killing tumor cells. Approximately 50% of all American cancer patients are treated with radiotherapy at some time during the course of their disease, making radiation one of the most widely used cytotoxic therapies. Currently, much effort is focused on understanding the molecular pathways that regulate tumor cell survival following radiotherapy, with the long term goal of developing novel therapeutic strategies for specifically sensitizing tumors to radiation. At present, there is particular interest in the role of tumor cell apoptotic potential as a regulator of both intrinsic and extrinsic determinants of the response of tumors to radiation therapy. Here we review what is currently known about the role of apoptosis as a mechanism of tumor cell killing by ionizing radiation and the relative contribution of apoptosis to cellular radiosensitivity and the ability to control human cancers using radiotherapy. The following topics will be discussed: (1) radiation-induced apoptosis in normal and malignant cells, (2) clinical findings with respect to apoptosis in human cancers treated with radiotherapy, (3) the contribution of apoptosis to intrinsic radiosensitivity in vitro, (4) the relevance of apoptosis to treatment outcome in experimental tumor models in vivo and (5) the potential of exploiting apoptosis as a means to improve the therapeutic efficacy of radiotherapy.  相似文献   

14.
Radiation therapy is an important treatment choice for unresectable advanced human lung cancers, and a critical adjuvant treatment for surgery. However, radiation as a lung cancer treatment remains far from satisfactory due to problems associated with radiation resistance in cancer cells and severe cytotoxicity to non-cancer cells, which arise at doses typically administered to patients. We have recently identified a promising novel inhibitor of β-catenin/Tcf4 interaction, named BC-23 (C21H14ClN3O4S), which acts as a potent cell death enhancer when used in combination with radiation. Sequential exposure of human p53-null non-small cell lung cancer (NSCLC) H1299 cells to low doses of x-ray radiation, followed 1 hour later by administration of minimally cytotoxic concentrations of BC-23, resulted in a highly synergistic induction of clonogenic cell death (combination index <1.0). Co-treatment with BC-23 at low concentrations effectively inhibits Wnt/β-catenin signaling and down-regulates c-Myc and cyclin D1 expression. S phase arrest and ROS generation are also involved in the enhancement of radiation effectiveness mediated by BC-23. BC-23 therefore represents a promising new class of radiation enhancer.  相似文献   

15.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

16.
Ionizing radiation can induce DNA damage and cell death by generating reactive oxygen species (ROS). The objective of this study was to investigate the radioprotective effect of paeoniflorin (PF, a main bioactive component in the traditional Chinese herb peony) on irradiated thymocytes and discover the possible mechanisms of protection. We found 60Co gamma-ray irradiation increased cell death and DNA fragmentation in a dose-dependent manner while increasing intracellular ROS. Pretreatment of thymocytes with PF (50-200 microg/ml) reversed this tendency and attenuated irradiation-induced ROS generation. Hydroxyl-scavenging action of PF in vitro was detected through electron spin resonance assay. Several anti-apoptotic characteristics of PF, including the ability to diminish cytosolic Ca2+ concentration, inhibit caspase-3 activation, and upregulate Bcl-2 and downregulate Bax in 4Gy-irradiated thymocytes were determined. Extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 kinase were activated by 4Gy irradiation, whereas its activations were partly blocked by pretreatment of cells with PF. The presence of ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580 decreased cell death in 4Gy-irradiated thymocytes. These results suggest PF protects thymocytes against irradiation-induced cell damage by scavenging ROS and attenuating the activation of the mitogen-activated protein kinases.  相似文献   

17.
《Free radical research》2013,47(3):339-345
Radiation therapy has been widely used for treating human cancers. However, cancer cells develop radioresistant phenotypes that decrease the efficacy of radiotherapy. Ionizing radiation (IR) induces the production of reactive oxygen species, which play an important role in apoptotic cell death. Therefore, radiation therapy combined with a sensitizer, which modulates cellular redox status, has the potential to enhance therapeutic efficacy in a variety of human cancers. Here, we investigated the radiosensitizing effects of ursolic acid (UA), a pentacyclic triterpenoid found in rosemary and holy basil. IR-induced apoptosis in cancer cell lines such as DU145, CT26 and B16F10 was significantly enhanced by UA, as reflected by DNA fragmentation, cellular redox status, mitochondrial dysfunction and modulation of apoptotic marker proteins. Additionally, UA combined with IR was also effective for inhibiting tumorigenesis in B16F10 melanoma cells implanted into mice. Taken together, these results suggest that applying UA together with IR may be an effective combination modality for treating cancer.  相似文献   

18.
Radiation therapy has been widely used for treating human cancers. However, cancer cells develop radioresistant phenotypes that decrease the efficacy of radiotherapy. Ionizing radiation (IR) induces the production of reactive oxygen species, which play an important role in apoptotic cell death. Therefore, radiation therapy combined with a sensitizer, which modulates cellular redox status, has the potential to enhance therapeutic efficacy in a variety of human cancers. Here, we investigated the radiosensitizing effects of ursolic acid (UA), a pentacyclic triterpenoid found in rosemary and holy basil. IR-induced apoptosis in cancer cell lines such as DU145, CT26 and B16F10 was significantly enhanced by UA, as reflected by DNA fragmentation, cellular redox status, mitochondrial dysfunction and modulation of apoptotic marker proteins. Additionally, UA combined with IR was also effective for inhibiting tumorigenesis in B16F10 melanoma cells implanted into mice. Taken together, these results suggest that applying UA together with IR may be an effective combination modality for treating cancer.  相似文献   

19.
20.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. By supplying NADPH for antioxidant systems, we recently demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are some of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm). In this study, we demonstrate that modulation of IDPm activity in U937 cells regulates ionizing radiation-induced apoptosis. When we examined the regulatory role of IDPm against ionizing radiation-induced apoptosis in U937 cells transfected with the cDNA for mouse IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPm expressed in target cells and their susceptibility to apoptosis. Upon exposure to 2 gray gamma-irradiation, there was a distinct difference between the IDPm transfectant cells in regard to the morphological evidence of apoptosis, DNA fragmentation, cellular redox status, oxidative damage to cells, mitochondrial function, and the modulation of apoptotic marker proteins. In addition, transfection of HeLa cells with an IDPm small interfering RNA decreased the activity of IDPm, enhancing the susceptibility of radiation-induced apoptosis. Taken together, these results indicate that IDPm may play an important role in regulating the apoptosis induced by ionizing radiation, and the effect of IDPm small interfering RNA on HeLa cells offers the possibility of developing a modifier of radiation therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号