共查询到20条相似文献,搜索用时 15 毫秒
1.
Nikiforovich Gregory V. Galaktionov Stan Tseitin Vladimir M. Lowis David R. Shenderovich Mark D. Marshall Garland R. 《International journal of peptide research and therapeutics》1998,5(5-6):413-415
Summary This paper outlines the basic strategy to build 3D models of transmembrane G-protein coupled receptors (GPCRs) starting from
their amino acid sequences in a ‘block-by-block’ manner: (i) locate possible TM helical fragments in the GPCR sequence; (ii)
build 3D structures for these helices; (iii) arrange isolated helices across the membrane; (iv) calculate all pairwise helix-helix
interactions; (v) assemble helical bundle(s); (vi) restore interhelical loops and N- and C-termini; and (vii) refine the entire
3D structure(s). Computer algorithms and preliminary results for most of the steps are discussed. 相似文献
2.
Hugo M. Martinez Jacob V. Maizel Jr Bruce A. Shapiro 《Journal of biomolecular structure & dynamics》2013,31(6):669-683
Abstract Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented. 相似文献
3.
Rohit Bavi Shailima Rampogu Yongseong Kim Yong Jung Kwon Seok Ju Park 《Journal of receptor and signal transduction research》2017,37(3):224-238
High level of hematopoietic cell kinase (Hck) is associated with drug resistance in chronic myeloid leukemia. Additionally, Hck activity has also been connected with the pathogenesis of HIV-1 and chronic obstructive pulmonary disease. In this study, three-dimensional (3D) QSAR pharmacophore models were generated for Hck based on experimentally known inhibitors. A best pharmacophore model, Hypo1, was developed with high correlation coefficient (0.975), Low RMS deviation (0.60) and large cost difference (49.31), containing three ring aromatic and one hydrophobic aliphatic feature. It was further validated by the test set (r?=?0.96) and Fisher’s randomization method (95%). Hypo 1 was used as a 3D query for screening the chemical databases, and the hits were further screened by applying Lipinski’s rule of five and ADMET properties. Selected hit compounds were subjected to molecular docking to identify binding conformations in the active site. Finally, the appropriate binding modes of final hit compounds were revealed by molecular dynamics (MD) simulations and free energy calculation studies. Hence, we propose the final three hit compounds as virtual candidates for Hck inhibitors. 相似文献
4.
Bruce Tidor 《Proteins》1994,19(4):310-323
The stability mutant Tyr-26 → Asp was studied in the Cro protein from bacteriophage λ using free energy molecular dynamics simulations. The mutant was calculated to be more stable than the wild type by 3.0 ± 1.7 kcal/mol/monomer, in reasonable agreement with experiment (1.4 kcal/mol/monomer). Moreover, the aspartic acid in the mutant was found to form a capping interation with the amino terminus of the third α-helix of Cro. The simulations were analyzed to understand better the source of the stability of this helix-capping interaction and to examine the results in light of previous explanations of stabilizing helix caps-namely, a model of local unsatisfied hydrogen bonds at the helix termini and the helix macro dipole model. Analysis of the simulations shows that the stabilizing effect of this charged helical cap is due both to favorable hydrogen bonds with backbone NH groups at the helix terminus and to favorable electrostatic interactions (but not hydrogen bonds) with their carbonyls (effectively the next row of local dipoles in the helix). However, electrostatic interactions are weak or negligible with backbone dipolar groups in the helix further away from the terminus. Moreover, the importance of other local electrostatic interactions with polar side chains near the helix terminus, which are neglected in most treatments of this effect, are shown to be important. Thus, the results support a model that is intermediate between the two previous explanations: both unsatisfied hydrogen bonds at the helix terminus and other, local preoriented dipolar groups stabilize the helix cap. These findings suggest that similar interactions with preoriented dipolar groups may be important for cooperativity in other charge–dipole interactions and may be employed to advantage for molecular design. © 1994 Wiley-Liss, Inc. 相似文献
5.
Sara Marsango Gianluigi Caltabiano Chantevy Pou María José Varela Liste Graeme Milligan 《The Journal of biological chemistry》2015,290(24):15146-15162
The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a ”rhombic” tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures. 相似文献
6.
D. E. Nolde P. E. Volynskii A. S. Arseniev R. G. Efremov 《Russian Journal of Bioorganic Chemistry》2000,26(2):115-124
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our
approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the
hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a
nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational
space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum,
the membrane-like environment was shown to stabilize the α-helical conformation: low-energy structures have a helicity index
of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane
depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide
with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface
parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems.
In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound
proteins and peptides with biologically important functional activities. 相似文献
7.
Magudeeswaran Sivanandam Saravanan Manjula 《Journal of biomolecular structure & dynamics》2013,31(15):4006-4018
8.
P. E. Volynskii D. E. Nolde A. S. Arseniev R. G. Efremov 《Russian Journal of Bioorganic Chemistry》2000,26(3):143-151
The conformational space of a hydrophobic peptide fragment of glycophorin A in a lipid membrane was studied with the Monte Carlo method using the solvation model described in the first communication of this series. The simulation was performed for various starting orientations of the peptide relative the membrane bilayer: outside, inside, partially immersed, and transbilayer. We showed that the membrane substantially stabilizes the α-helical conformation of the central hydrophobic part of the glycophorin A molecule, which for the most part is immersed in the apolar core of the bilayer. For various conformational states, energy values were calculated and the orientations of the peptide relative to the membrane were characterized. Depending on the thickness of the bilayer, either an entirely α-helical conformation in transbilayer orientation or a conformation with a kink in the central part of the helix with theN- andC-termini exposed on one side of the membrane corresponds to the minimal-energy structure. The transmembrane orientation of glycophorin A is energetically advantageous when the membrane thickness is close to the length of its hydrophobic helical portion, which is consistent with the effect ofhydrophobic match observed experimentally. The prospects for further refinement of the model are discussed. For communication I, see [1]. 相似文献
9.
10.
This work addresses the use of 3D point data to measure rigid motions, in the presence of occlusion and without reference to a prior model of relative point locations. This is a problem where cluster-based measurement techniques are used (e.g. for measuring limb movements) and no static calibration trial is available. The same problem arises when performing the task known as roving capture, in which a mobile 3D movement analysis system is moved through a volume with static markers in unknown locations and the ego-motion of the system is required in order to understand biomechanical activity in the environment. To provide a solution for both of these applications, the new concept of a visibility graph is introduced, and is combined with a generalised procrustes method adapted from ones used by the biological shape statistics and computer graphics communities. Recent results on shape space manifolds are applied to show sufficient conditions for convergence to unique solution. Algorithm source code is available and referenced here. Processing speed and rate of convergence are demonstrated using simulated data. Positional and angular accuracy are shown to be equivalent to approaches which require full calibration, to within a small fraction of input resolution. Typical processing times for sub-micron convergence are found to be fractions of a second, so the method is suitable for workflows where there may be time pressure such as in sports science and clinical analysis. 相似文献
11.
Joan Segura Ruben Sanchez-Garcia Daniel Tabas-Madrid Jesus Cuenca-Alba Carlos?Oscar?S. Sorzano Jose?Maria Carazo 《Biophysical journal》2016,110(4):766-775
Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es. 相似文献
12.
Cell migration is a multi-scale process that integrates signaling, mechanics and biochemical reaction kinetics. Various mathematical models accurately predict cell migration on 2D surfaces, but are unable to capture the complexities of 3D migration. Additionally, quantitative 3D cell migration models have been few and far between. In this review we look and characterize various mathematical models available in literature to predict cell migration in 3D matrices and analyze their strengths and possible changes to these models that could improve their predictive capabilities.Key words: cell migration, 3D motility, mathematical models, cancer, multi-scale 相似文献
13.
Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures.
下载免费PDF全文

J. E. Wampler E. A. Bradley D. E. Stewart M. W. Adams 《Protein science : a publication of the Protein Society》1993,2(4):640-649
The three-dimensional structure of rubredoxin from the hyperthermophilic archaebacterium, Pyrococcus furiosus, has been modeled from the X-ray crystal structures of three homologous proteins from Clostridium pasteurianum, Desulfovibrio gigas, and Desulfovibrio vulgaris. All three homology models are similar. When comparing the positions of all heavy atoms and essential hydrogen atoms to the recently solved crystal structure (Day, M. W., et al., 1992, Protein Sci. 1, 1494-1507) of the same protein, the homology model differ from the X-ray structure by 2.09 A root mean square (RMS). The X-ray and the zinc-substituted NMR structures (Blake, P. R., et al., 1992b, Protein Sci. 1, 1508-1521) show a similar level of difference (2.05 A RMS). On average, the homology models are closer to the X-ray structure than to the NMR structures (2.09 vs. 2.42 A RMS). 相似文献
14.
《Journal of receptor and signal transduction research》2013,33(2):313-327
AbstractRecent studies in this laboratory have indicated that 90% of the unoccupied receptors for 1,25-dihydroxyvitamin D3 [1,25(OH)2-D3] are associated with nuclear components when chick intestinal mucosa is homogenized in low salt buffer (TED: 10 mM Tris, 1.5 mM EDTA, 1.0 mM dithiothreitol, pH 7.4). This observation suggested that previously reported cytosol 1,25(OH)2D3 receptors could result instead from salt extraction of nuclear receptors. The studies herein indicate that tissue 1,25(OH)2D3 receptor recovery is 30–50% lower in cytosol prepared from KTED (0.3 M KC1 + TED) or STKM (0.25 M sucrose, 50 mM Tris, 25 mM KC1, 5 mM MgCl2, pH 7.4) than in TED-prepared chromatin. Thus tissue concentrations of unoccupied 1,25(OH)2D3 receptors can be closely estimated in TED-chromatin; full quantitation can be achieved by summing the number of receptors in TED-chromatin plus TED-cytosol. Incubation at different temperatures for varying times yielded maximal receptor recovery (6.1 pmol/g mucosal wet weight) at 4°C for 4–24 h or at 23° for 30 min. Scatchard analyses confirmed that only a single class of high affinity (Kd 0.4 nM) binding sites was present under all incubation conditions. Dithiothreitol significantly improved receptor recovery both in cytosol and in chromatin preparations. Conversely, inclusion of 20% glycerol caused an artificial increase in specific H-1,25(OH)2D3 binding due to a second class of chromatin binding sites with ten-fold higher Kd (8.1 nM) and a greater number of binding sites than the 1,25(OF)2D3 receptor. In conclusion, the TED-chromatin assay procedure provides better quantitation of the tissue content of unoccupied 1,25(OH)2D3 receptors than do previously described techniques. The presence of unoccupied nuclear-associated 1,25(OH)2D3 receptors in other target tissues emphasizes the potential for erroneous physiological conclusions if these chromatin-associated receptors are overlooked. 相似文献
15.
Bea Unterer Cord-Michael Becker Carmen Villmann 《The Journal of biological chemistry》2012,287(46):39205-39215
Truncated glycine receptors that have been found in human patients suffering from the neuromotor disorder hyperekplexia or in spontaneous mouse models resulted in non-functional ion channels. Rescue of function experiments with the lacking protein portion expressed as a separate independent domain demonstrated restoration of glycine receptor functionality in vitro. This construct harbored most of the TM3-4 loop, TM4, and the C terminus and was required for concomitant transport of the truncated α1 and the complementation domain from the endoplasmic reticulum toward the cell surface, thereby enabling complex formation of functional glycine receptors. Here, the complementation domain was stepwise truncated from its N terminus in the TM3-4 loop. Truncation of more than 49 amino acids led again to loss of functionality in the receptor complex expressed from two independent domain constructs. We identified residues 357–418 in the intracellular TM3-4 loop as being required for reconstitution of functional glycine-gated channels. All complementation constructs showed cell surface protein expression and correct orientation according to glycine receptor topology. Moreover, we demonstrated that the truncations did not result in a decreased protein-protein interaction between both glycine receptor domains. Rather, deletions of more than 49 amino acids abolished conformational changes necessary for ion channel opening. When the TM3-4 loop subdomain harboring residues 357–418 was expressed as a third independent construct together with the truncated N-terminal and C-terminal glycine receptor domains, functionality of the glycine receptor was again restored. Thus, residues 357–418 represent an important determinant in the process of conformational rearrangements following ligand binding resulting in channel opening. 相似文献
16.
A molecular model of a mammalian membrane-bound cytochrome P450, rat P450 2B1, was constructed in order to elucidate its mode of attachment to the endoplasmic reticulum and the structural basis of substrate specificity. The model was primarily derived from the structure of P450BM-3, which as a class II P450 is the most functionally similar P450 of known structure. However, model development was also guided by the conserved core regions of P450cam and P450terp. To optimally align the P450 2B1 and P450BM-3 sequences, multiple alignment was performed using sequences of five P450s in the II family, followed by minor adjustments on the basis of secondary structure predictions. The resulting P450 2B1 homology model structure was refined by molecular dynamics heating, equilibration, simulation, and energy minimization. The model suggests that the F–G loop serves as both a hydrophobic membrane anchor and entrance channel for hydrophobic substrates from the membrane to the P450 active site. To assess the mode of substrate binding, benzphetamine, testosterone, and benzo[a]pyrene were docked into the active site. The hydrophobic substrate-binding pocket is consistent with the preferences of this P450 toward hydrophobic substrates, while the presence of an acidic Glu-105 in this pocket is consistent with the preference of this P450 for the cationic substrate benzphetamine. This model is thus consistent with several known experimental properties of this P450, such as membrane attachment and substrate selectivity. 相似文献
17.
18.
Abstract Lipid bilayer plays a crucial role in folding of membrane peptides and their stabilization in the membrane-bound state. Correct treatment of the media effects is thus essential for realistic simulations of peptides in bilayers. Previously (Volynsky et al., 1999), we proposed an efficient solvation model which mimics heterogeneous membrane-water system. The model is based on combined employment of atomic solvation parameters for water and hydrocarbon, which approximate hydrated headgroups and acyl chains of lipids, respectively. In this study, the model is employed in non-restrained Monte Carlo simulations of several peptides: totally apolar 20-residue poly-L-Leu, hydrophobic peptide with polar edges, and strongly amphiphilic pep-tide. The principal goals are: to explore energy landscape of these peptides in membrane; to characterize the structures of low-energy states and their orientations with respect to the bilayer. Simulations were performed starting from different structures (unordered or helical) and orientations. It was found that the membrane environment significantly promotes an α-helical conformation for all the peptides, while their energetically favourable orientations are quite different. Thus, poly-Leu was immobilized inside the membrane, the hydrophobic peptide with polar termini adapted transbilayer orientation, whereas the amphiphilic peptide stayed on the lipid-water interface in peripherial orientation. Energy barriers between different states were characterized. The computational results were compared with the experimental structural data. 相似文献
19.
Donor–acceptor (D–A) copolymers have been proved to be excellent candidates for efficient polymer solar cells. In this paper, a series of D–A polymers with the same donor unit of Si4T and different acceptor units are theoretically designed. Two novel strategies (extending the length of π-conjugation and using the electron-deficient groups) have been considered for the conjugated polymer design. The energy levels and band gaps are theoretically investigated using the confirmed density functional theory/time-dependent density functional theory method. The results show that, compared with two original polymers, the newly designed D–A polymers have better predicted performances with smaller band gaps and lower highest occupied molecular orbital energy levels. When combined with fullerene derivatives (PCBM) for organic solar cells, these polymers can produce power conversion efficiencies as high as ~10%, estimated by Scharber diagrams. 相似文献
20.
Modeling tissue morphogenesis and cancer in 3D 总被引:8,自引:0,他引:8
Three-dimensional (3D) in vitro models span the gap between two-dimensional cell cultures and whole-animal systems. By mimicking features of the in vivo environment and taking advantage of the same tools used to study cells in traditional cell culture, 3D models provide unique perspectives on the behavior of stem cells, developing tissues and organs, and tumors. These models may help to accelerate translational research in cancer biology and tissue engineering. 相似文献