首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced thiols (e.g., cysteine) are important in the maintenance of lymphocyte cell viability and growth. L1210 monocytic leukaemia cells were known to have a limited ability to uptake cystine, and they require cysteine for cell growth. L1210 cells underwent apoptosis when cultured without thiol-bearing and dithiol-cleaving compounds, adding thiols suppressed the apoptosis and promoted cell growth. A specific inhibitor of interleukin-1 -converting enzyme (ICE)-like and CPP32-like proteases could suppress L1210 cell apoptosis induced by thiol deprivation. The cell lysates of apoptotic L1210 cells exhibited protease activity that could cleave DEVD-AMC, but not YVAD-AMC, and so CPP32-like proteases, but not ICE-like proteases, were activated and participated in apoptosis. The addition of thiols could suppress CPP32-like protease activation. Although the cell death-suppressor bcl-2-family proteins (bcl-2 and bcl-XL) were recently found to suppress the activation of CPP32-like proteases, the expression levels of death-suppressor bcl-2-family proteins did not change when thiols were added. These results suggest that reduced thiols maintain L1210 cell survival by inhibiting the activation of CPP32-like proteases without changing the anti-apoptotic bcl-2-family protein expression.  相似文献   

2.
Platelets are produced from megakaryocytes (MKs), although the pathway leading from stem cells to MK lineages are not yet fully understood. Recently, we reported to obtain abundant MKs and platelets from human subcutaneous adipose tissues. Adipose tissues contain various cell types, most of which are lineage cells from mesenchymal or adipocyte-derived stem cells, distinct from hematopoietic cells. To identify the cells responsible for the differentiation MK lineages in adipose tissues, this study examined whether the preadipocyte cell line 3T3-L1 and fibroblast cell line 3T3 differentiated into MK lineages in vitro. Cells were cultured in megakaryocyte lineage induction medium. By day 4, most of 3T3 cell-derived cells leaded to cell death. In contrast, 3T3-L1-derived cells on days 8 showed to have typical characterizations of MK lineages in analyses for specific marker, DNA ploidy, transmission electro micrograph. 3T3-L1-derived platelet-sized cells on day 12 could be stimulated by ADP and PAR4-activating peptide. This study clearly shows in vitro differentiation from 3T3-L1 cells, not from 3T3 cells, into MK lineages.  相似文献   

3.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

4.
5.
Blastocystis hominis undergo apoptosis after treatment with a cytotoxic monoclonal antibody (MAb), 1D5, by mechanisms that are not fully understood, although our previous study demonstrated that caspase-3-like protease activity is involved. To elucidate the mechanism of MAb 1D5-induced apoptosis, we inhibited Blastocystis caspase-3-like protease to investigate if there would be a concomitant decrease in in situ DNA fragmentation. However, MAb 1D5-induced apoptosis, evidenced by DNA fragmentation, was not completely blocked by pretreating with specific caspase-3 inhibitor, Ac-DEVD-CHO, indicating that caspase-independent apoptotic pathways might also be involved. Our results also revealed that the treatment with MAb 1D5 resulted in the loss of mitochondrial membrane potential (deltapsim), independent of Ac-DEVD-CHO pretreatment. In conclusion, this study demonstrates that MAb 1D5-induced apoptosis in B. hominis is not wholly dependent on caspase-3-like protease activity and is associated with mitochondrial dysregulation. This is the first report showing evidence for complex apoptotic pathways in a unicellular parasite.  相似文献   

6.
7.
Mitochondrial dynamics and functionality are linked to the autophagic degradative pathway under several stress conditions. However, the interplay between mitochondria and autophagy upon cell death signalling remains unclear. The T‐cell receptor pathway signals the so‐called activation‐induced cell death (AICD) essential for immune tolerance regulation. Here, we show that this apoptotic pathway requires the inhibition of macroautophagy. Protein kinase‐A activation downstream of T‐cell receptor signalling inhibits macroautophagy upon AICD induction. This leads to the accumulation of damaged mitochondria, which are fragmented, display remodelled cristae and release cytochrome c, thereby driving apoptosis. Autophagy‐forced reactivation that clears the Parkin‐decorated mitochondria is as effective in inhibiting apoptosis as genetic interference with cristae remodelling and cytochrome c release. Thus, upon AICD induction regulation of macroautophagy, rather than selective mitophagy, ensures apoptotic progression.  相似文献   

8.
Phosphorylation and dephosphorylation are important cellular events regulating major metabolic activities such as signal transduction, gene expression, cell cycle progression, and apoptosis. It is well documented that okadaic acid, a potent inhibitor of protein phosphatase-1 (PP-1) and -2A (PP-2A), can induce apoptosis in a variety of cell lines. Our recent studies have revealed that in the immortal rabbit lens epithelial cell line, N/N1003A, inhibition of PP-1, but not PP-2A, leads to rapid apoptosis of the lens epithelial cells. This induction of cell death is associated with up-regulated expression of a set of genes, including the tumor-suppressor gene, p53, and the proapoptotic gene, bax. In the present study, we demonstrate that inhibition of PP-1 by okadaic acid in the primary cultures of rat lens epithelial cells also leads to apoptotic death. Moreover, we show that the cysteine protease, caspase-3, is important in the execution of okadaic acid-induced apoptosis. Treatment of the primary cultures of rat lens epithelial cells with 100 nM okadaic acid up-regulates expression of caspase-3 at the mRNA, protein, and enzyme activity levels. Inhibition of the caspase-3 activity with a chemically synthesized inhibitor prevents okadaic acid-induced apoptosis in rat lens epithelial cells. Similar results are also observed in the immortal cell line N/N1003A. Furthermore, stable expression of the mouse gene encoding lens alphaB crystallin inhibits okadaic acid-induced apoptosis, and this inhibition is associated with repression of the okadaic acid-induced up-regulation of caspase-3 activity. Taken together, these results demonstrate that caspase-3 is actively involved in okadaic acid-induced lens epithelial cell apoptosis.  相似文献   

9.
Caspase-3 is the ultimate executioner caspase that is essential for the nuclear changes associated with apoptosis. We investigated caspase-3 immunohistochemical expression in 58 primary intracranial meningiomas, using one monoclonal antibody detecting both precursor and cleaved caspase-3 (CPP32) and a second recognizing only the cleaved activated form (ASP175). Caspase-3 expression was analyzed in relation to baseline apoptosis—as illustrated by the expression of anti-single stranded DNA (ss-DNA), the antiapoptotic protein bcl-2, proliferation indices (Ki-67, PCNA, topoisomerase IIa, mitosin C), hormonal status (estrogen, progesterone, androgen receptors), standard clinicopathological parameters and patients’ disease-free survival. Caspase-3 immunostaining was observed in 62% of cases for CPP32 and in 24% for ASP175. In both instances, the labeling index (LI) was significantly correlated with ss-DNA LI (p=0.038 and p=0.018). CPP32 but not ASP175 LI positively correlated with the mitotic index (p=0.001) and PCNA LI (p=0.004). Both CPP32 and ASP175 LIs were increased in nonbenign meningiomas (p<0.0001 and p=0.0035 respectively). In univariate and multivariate survival analyses, caspase-3 predicted meningioma recurrence, independently affecting disease-free survival (p=0.011 and p=0.047 respectively for CPP32; p<0.0001 and p=0.012 respectively for ASP175). Caspase-3 may prove to be a useful predictor of early recurrence in a group of neoplasms characterized by the frequent discordance between histology and clinical behavior.  相似文献   

10.
We are reporting the identification of a novel C-type lectin receptor-ligand pair that is involved in T cell costimulation. The receptor, OCILRP2/Clr-g, is rapidly induced following T cell activation and maintained at a substantial level of up to 72 h. The ligand, NKRP1f, is predominantly expressed on dendritic cells (DC). The soluble OCILRP2-Ig blocking protein significantly suppresses specific antigen-stimulated T cell proliferation as well as IL-2 secretion both in vitro and in vivo; conversely, NKRP1f-expressing antigen presenting cells (APC) enhance B7.1/CD28-mediated costimulation for T cell proliferation through interaction with OCILRP2/Clr-g. Our studies reveal a unique functional interaction between two C-type lectins, OCILRP2/Clr-g and NKRP1f, during APC-mediated T cell costimulation and suggest a role for C-type lectins in maintaining T cell response or memory in vivo.  相似文献   

11.
A murine embryonic mesenchymal cell line C3H/10T1/2 possesses the potential to differentiate into multiple cell phenotypes and has been recognized as multipotent mesenchymal stem cells, but no in vitro model of its endothelial differentiation has been established and the effect of angiogenic factors on the differentiation is unknown. The aim of the present study was to evaluate the role of angiogenic factors in inducing endothelial differentiation of C3H/10T1/2 cells in vitro. C3H/10T1/2 cells were treated with angiogenic factors, VEGF (10 ng/mL) and bFGF (5 ng/mL). At specified time points, cells were subjected to morphological study, immunofluorescence staining, RT-PCR, LDL-uptake tests and 3-D culture for the examination of the structural and functional characteristics of endothelial cells. Classic cobblestone-like growth pattern appeared at 6 day of the induced differentiation. Immunofluorescence staining and RT-PCR analyses revealed that the induced cells exhibited endothelial cell-specific markers such as CD31, von Willebrand factor, Flk1, Flt1, VE-cadherin, Tie2, EphrinB2 and Vezf1 at 9 day. The induced C3H/10T1/2 cells exhibited functional characteristics of the mature endothelial phenotype, such as uptake of acetylated low-density lipoproteins (Ac-LDL) and formation of capillary-like structures in three-dimensional culture. At 9 day, Weibel–Palade bodies were observed under a transmission electron microscope. This study demonstrates, for the first time, endothelial differentiation of C3H/10T1/2 cells induced by angiogenic factors, VEGF and bFGF, and confirms the multipotential differentiation ability. This in vitro model is useful for investigating the molecular events in endothelial differentiation of mesenchymal stem cells.  相似文献   

12.
Using a plasmid bearing chloramphenicol acetyltransferase (CAT) gene controlled by Simian virus 40 (SV40) early promoter/enhancer complex (pA0cat), we analyzed functional enhancer motifs in 3T3-L1 fibroblast and adipocyte cells. Deletion mutant series of pA0 at the enhancer complex showed that gene expression both in fibroblast and adipocyte cells was dependent on a similar set of enhancer motifs. When pA0 was introduced into 3T3-L1 fibroblasts and the cells were induced to differentiate into adipocytes, CAT activity expressed in fibroblasts was suppressed. Experiments with the deletion mutants at the enhancer complex showed that the suppression was not related to any enhancer motif, and CAT activity was observed with a plasmid having only the promoter sequence. When pA0cat was co-transfected with excess of promoter sequence, the suppression in adipocytes was counteracted. This suggested that negativetrans-acting factors of the promoter sequence were responsible for the suppression in adipocytes.Abbreviations CAT chloramphenicol acetyltransferase - CAT the gene encoding CAT - SV40 Simian virus 40 - Asc-P ascorbic acid phosphate  相似文献   

13.
Abstract: Cultured cerebellar granule neurons undergo apoptosis when switched from a medium containing depolarizing levels of K+ (25 mM KCI) to medium containing lower levels of K+ (5 mM KCI). We used this paradigm to investigate the role of caspases in the death process. Two broad-spectrum caspase inhibitors, tert-butoxycarbonyl-Asp·(O-methyl)·fluoromethyl ketone and benzyloxycarbonyl-Val-Ala-Asp·fluoromethyl ketone, significantly reduced cell death (90 and 60%, respectively) at relatively low concentrations (10–25 µM), suggesting that caspase activation is involved in the apoptotic process. DNA fragmentation, a hallmark of apoptosis, was also reduced by these caspase inhibitors, suggesting that caspase activation occurred upstream of DNA cleavage in the sequence of events leading to cell death. As a step toward identifying the caspase(s) involved, the effects of N-acetyl Tyr-Val-Ala-Asp·chloromethyl ketone (YVAD·cmk), an interleukin-1β converting enzyme-preferring inhibitor, and N-acetyl Asp-Glu-Val-Asp·fluoromethyl ketone (DEVD·fmk), a CPP32-preferring inhibitor, were also evaluated. YVAD·cmk provided only modest (<20%) protection and only at the highest concentration (100 µM) tested, suggesting that interleukin-1β converting enzyme and/or closely related caspases were not involved. In comparison, DEVD·fmk inhibited cell death by up to 50%. Western blot analyses, however, failed to detect an increase in processing/activation of CPP32 or in the proteolysis of a CPP32 substrate, poly(ADP-ribose) polymerase, during the induction of apoptosis in granule neurons. Similarly, the levels of Nedd2, a caspase that is highly expressed in the brain and that is partially inhibited by DEVD·fmk, also remained unaffected in apoptotic neurons undergoing apoptosis. These results suggest that a DEVD-sensitive caspase other than CPP32 or Nedd2 mediates the induction of apoptosis in K+-deprived granule neurons.  相似文献   

14.
15.
To analyze the possibility that immunological alteration in asbestos-related diseases (ARDs) such as asbestosis (ASB) and malignant mesothelioma (MM) may affect the progression of cancers, a human adult T cell leukemia virus-immortalized T cell line (MT-2Org) was continuously exposed to 10 μg/ml of chrysotile-B (CB), an asbestos. After at least 8 months of exposure, the rate of apoptosis in the cells became very low and the resultant subline was designated MT-2Rst. The MT-2Rst cells were characterized by (i) enhanced expression of bcl-2, with regain of apoptosis-sensitivity by reduction of bcl-2 by siRNA, (ii) excess IL-10 secretion and expression, and (iii) activation of STAT3 that was inhibited by PP2, a specific inhibitor of Src family kinases. These results suggested that the contact between cells and asbestos may affect the human immune system and trigger a cascade of biological events such as activation of Src family kinases, enhancement of IL-10 expression, STAT3 activation and Bcl-2 overexpression. This speculation was partially confirmed by the detection of elevated bcl-2 expression levels in CD4 + peripheral blood T cells from patients with MM compared with those from patients with ASB or healthy donors. Further studies will be required to verify the role of T cells with enhanced bcl-2 expression in tumor progression induced by asbestos exposure.  相似文献   

16.
We previously reported that wogonin, a flavonoid compound, was a potent apoptosis inducer of human hepatoma SMMC-7721 cells and murine sarcoma S180 cells. In the present study, the effect of oroxylin A, one wogonin structurally related flavonoid isolated from Scutellariae radix, on human hepatocellular carcinoma cell line HepG2 was examined and molecular mechanisms were also investigated. Oroxylin A inhibited HepG2 cell proliferation in a concentration- and time-dependent manner measured by MTT-assay. Treatment with an apoptosis-inducing concentration of oroxylin A caused typical morphological changes and apoptotic blebbing in HepG2 cells. DNA fragmentation assay was used to examine later apoptosis induced by oroxylin A. FACScan analysis revealed a dramatic increase in the number of apoptotic and G(2)/M phase arrest cells after oroxylin A treatment. The pro-apoptotic activity of oroxylin A was attributed to its ability to modulate the concerted expression of Bcl-2, Bax, and pro-caspase-3 proteins. The expression of Bcl-2 protein and pro-caspase-3 protein was dramatically decreased after treatment with oroxylin A. These results demonstrated that oroxylin A could effectively induce programmed cell death and suggested that it could be a promising antitumor drug.  相似文献   

17.
Transient receptor potential vanilloid 6 (TRPV6) channels are key players in calcium metabolism of healthy and cancerous cells. Nevertheless, the mechanisms controlling abundance of these channels in plasma membrane of the cells to regulate Ca2+ transport is still poorly understood. In this study, we provide the first evidence that TRPV6 calcium channels and Ca 2+ influx in Jurkat T cell line are modulated by cholesterol, a main lipid component of the plasma membrane. Using patch‐clamp technique, we found that activity of TRPV6 channels decreased by cholesterol sequestration with methyl‐β‐cyclodextrin (MβCD). Continuous measurement of intracellular Ca2+ revealed a reduction of Ca2+ influx into Jurkat cells following cholesterol depletion. Immunofluorescence and immunoelectron microscopy analyses of MβCD‐treated cells detected the lower surface expression of the TRPV6 proteins in comparison with control cells. In general, our data showed that cholesterol regulates TRPV6 channel activity and TRPV6‐mediated Ca2+ influx in cells, apparently affecting the localization and density of the calcium channels in the plasma membrane of Jurkat T cells.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):1290-1299
The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.  相似文献   

19.
The 3T3-F442A preadipocyte cell line was previously shown to possess specific glucocorticoid receptors whose number increased in the time course of differentiation. We have examined the effects of a three day dexamethasone treatment, added at confluence, on cells differentiated in the presence or absence of insulin. Triglyceride accumulation, polyamine content as well as glycerophosphate dehydrogenase and fatty acid synthetase activities were measured during the adipose conversion. We have also determined 2-deoxyglucose uptake in non-differentiated and differentiated cells. Dexamethasone was shown to decrease the adipose conversion by 3T3-F442A cells in the presence or absence of insulin. Intracellular spermidine content in differentiating cells was sensitive to dexamethasone and insulin in the same way as an enzymatic marker of terminal differentiation, glycerophosphate dehydrogenase. Dexamethasone decreases the 2 deoxyglucose uptake in non-differentiated and differentiated cells while insulin increases this uptake only in differentiated cells. This work shows that glucocorticoids inhibit adipocyte metabolism at distinct levels and suggests that these hormones might play an important role in the regulation of adipose tissue mass.Abbreviations DEX dexamethasone - FAS fatty acid synthetase - GPDH glycerophosphate dehydrogenase - MIX 1-methyl-3-isobutylxanthine  相似文献   

20.
The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号