首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.  相似文献   

2.
Birds’ nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72%) were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus, Aspergillus flavus, Scopulariopsis brevicaulis, Chrysosporium keratinophilum and Fusarium poae, Fusarium sporotrichioides. In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.  相似文献   

3.
The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.  相似文献   

4.
The review discusses the data on vitamin D accumulation in animals, plants, and other organisms. 7-Dehydrocholesterol (7-DHC) and ergosterol are considered to be the only true precursors of vitamin D, although even vitamin D2 (ergocalciferol) is not fully comparable to vitamin D3 (cholecalciferol) in regard to their functions. These precursors are converted by UV radiation into the corresponding D vitamins. There are a few published reports that this reaction can also occur in the dark or under blue light, which is unexpected and requires explanation. Another unexpected result is conversion of pro-vitamins D (7-DHC and ergosterol) into vitamin D3 and D2 via pre-vitamin D at low temperatures (<16°C) in the lichen Cladonia rangiferina. An extensive survey of literature data leads to the conclusion that vitamin D is synthesized from (1) 7-DHC via lanosterol (D3) in land animals; (2) 7-DHC via cycloartenol (D3) in plants; (3) ergosterol via lanosterol (D2) in fungi; and (4) 7-DHC or ergosterol (D3 or D2) in algae. Vitamin D primarily accumulates in organisms, in which it acts as a pro-hormone, e.g., land animals. It can also be found as a degradation product in many other species, in which spontaneous conversion of some membrane sterols upon UV irradiation leads to the formation of vitamins D3 or D2, even if they are not necessarily needed by the organism. Such products accumulate due to the absence of metabolizing enzymes, e.g., in algae, fungi, or lichens. Other organisms (e.g., zooplankton and fish) receive vitamins D with food; in this case, vitamins D do not seem to carry out biological functions; they are not metabolized but stored in cells. A few exceptions were found: the rainbow trout and at least four plant species that accumulate active hormone calcitriol (but not vitamin D) in relatively high amounts. As a result, these plants are very toxic for grazing animals (cause enzootic calcinosis). In connection with the proposal of some scientists to produce large quantities of vitamin D with the help of plants, the accumulation of calcitriol in some plants is discussed.  相似文献   

5.
Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ≤1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance.  相似文献   

6.
Over the past 30 years, research on the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) has resulted in the isolation of numerous genera of bacteria, fungi and algae capable of degrading low molecular weight PAHs (compounds containing three or less fused benzene rings). High molecular weight PAHs (compounds containing four or more fused benzene rings) are generally recalcitrant to microbial attack, although some fungi and algae are capable of transforming these compounds. Until recently, only a few genera of bacteria have been isolated with the ability to utilise four-ring PAHs as sole carbon and energy sources while cometabolism of five-ring compounds has been reported. The focuss of this review is on the high molecular weight PAH benzo[a]pyrene (BaP). There is concern about the presence of BaP in the environment because of its carcinogenicity, teratogenicity and toxicity. BaP has been observed to accumulate in marine organisms and plants which could indirectly cause human exposure through food consumption. This review provides an outline of the occurrence of BaP in the environment and the ability of bacteria, fungi and algae to degrade the compound, including pathways for BaP degradation by these organisms. In addition, approaches for improving microbial degradation of BaP are discussed.  相似文献   

7.
Bacterial volatiles and their action potential   总被引:1,自引:0,他引:1  
During the past few years, an increasing awareness concerning the emission of an unexpected high number of bacterial volatiles has been registered. Humans sense, intensively and continuously, microbial volatiles that are released during food transformation and fermentation, e.g., the aroma of wine and cheese. Recent investigations have clearly demonstrated that bacteria also employ their volatiles during interactions with other organisms in order to influence populations and communities. This review summarizes the presently known bioactive compounds and lists the wide panoply of effects possessed by organisms such as fungi, plants, animals, and bacteria. Because bacteria often emit highly complex volatile mixtures, the determination of biologically relevant volatiles remains in its infancy. Part of the future goal is to unravel the structure of these volatiles and their biosynthesis. Nevertheless, bacterial volatiles represent a source for new natural compounds that are interesting for man, since they can be used, for example, to improve human health or to increase the productivity of agricultural products.  相似文献   

8.
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.  相似文献   

9.
Arthropods are very important organisms in the environment in relation to transmission of pathogenic infections to humans. The information on transmission of pathogenic infections to people by commercially offered food arthropods is scant. Consumption of seafood is a very popular dietary habit around the world. Whereas shrimp are the most commonly consumed seafood item, crabmeat has recently become a very popular commercial product, specifically for a majority of European countries. The transmission of waterborne protozoan parasites is facilitated by consumption of seafood harvested from contaminated waters, drinking water or via contact with recreational and surface waters, and remains common throughout the developing as well as the developed world. Protozoan infections pose a significant health risk for immunocompetent individuals, and may cause life-threatening diseases among immunocompromised and immunosuppressed individuals. The transmissive stages of human protozoan parasites are small in size and are shed in large numbers in feces of infected people and animals. These pathogens are resistant to environmental stressors (sometimes even to chlorine disinfection), and only a few of them (e.g., Cryptosporidium oocysts, Giardia cysts, or Vibrio bacteria) are able to cause infection in seafood consumers.  相似文献   

10.
In the last few years mycoses have been caused by fungi formerly considered to be harmless for humans. They cause diseases of plants and insects; some of them are also used in the industry. They are now usually called “emerging fungi”. We investigated this flora with respect to their potential to cause infections in hospitals. These fungi are present in the air, on medical objects and instrumentation, in the respiratory tract and on the hands of hospital staff; other sources have been identified in the use of iatrogenic methods. Mycotic diseases, their risk factors, their clinical pictures, and spectra of agents were analyzed in 1990–2000; the results were compared with data in the literature. Transplantations were the most frequent risk factors, fungemia and abscess the most frequent clinical picture and filamentous fungi (generaAbsidia, Acremonium, Alternaria, Apophysomyces, Aspergillus, Bipolaris, Cladophialophora, Cunninghamella, Exserohilum, Fusarium, Chaetomium, Chrysosporium, Lecythophora, Ochroconis, Paecilomyces, Pythium, Rhizopus, Scedosporium, Scopulariopsis) were the most frequent agents of nosocomial infections. These filamentous fungi and also some yeasts (generaCandida, Cryptococcus, Trichosporon) bring about different clinical syndromes in both immunocompromised and immunocompetent patients.  相似文献   

11.
Mycotoxins as harmful indoor air contaminants   总被引:6,自引:0,他引:6  
Fungal metabolites (mycotoxins) that pose a health hazard to humans and animals have long been known to be associated with mold-contaminated food and feed. In recent times, concerns have been raised about exposures to mycotoxin-producing fungi in indoor environments, e.g., damp homes and buildings. The principal mycotoxins that contaminate food and feed (alfatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone) are rarely if ever found in indoor environments, but their toxicological properties provide an insight into the difficulties of assessing the health effects of related mycotoxins produced by indoor molds. Although the Penicillium and Aspergillus genera of fungi are major contaminants of both food and feed products and damp buildings, the particular species and hence the array of mycotoxins are quite different in these environments. The mycotoxins of these indoor species and less common mycotoxins from Stachybotrys and Chaetomium fungi are discussed in terms of their health effects and the need for relevant biomarkers and long-term chronic exposure studies.  相似文献   

12.
Nematode Indicators of Organic Enrichment   总被引:2,自引:0,他引:2  
The organisms of the soil food web, dependent on resources from plants or on amendment from other sources, respond characteristically to enrichment of their environment by organic matter. Primary consumers of the incoming substrate, including bacteria, fungi, plant-feeding nematodes, annelids, and some microarthropods, are entry-level indicators of enrichment. However, the quantification of abundance and biomass of this diverse group, as an indicator of resource status, requires a plethora of extraction and assessment techniques. Soluble organic compounds are absorbed by bacteria and fungi, while fungi also degrade more recalcitrant sources. These organisms are potential indicators of the nature of incoming substrate, but current methods of biomass determination do not reliably indicate their community composition. Guilds of nematodes that feed on bacteria (e.g., Rhabditidae, Panagrolaimidae) and fungi (e.g., Aphelenchidae, Aphelenchoididae) are responsive to changes in abundance of their food. Through direct herbivory, plant-feeding nematodes (e.g., many species of Tylenchina) also contribute to food web resources. Thus, analysis of the nematode community of a single sample provides indication of carbon flow through an important herbivore channel and through channels mediated by bacteria and fungi. Some nematode guilds are more responsive than others to resource enrichment. Generally, those bacterivores with short lifecycles and high reproductive potential (e.g., Rhabditidae) most closely mirror the bloom of bacteria or respond most rapidly to active plant growth. The feeding habits of some groups remain unclear. For example, nematodes of the Tylenchidae may constitute 30% or more of the individuals in a soil sample; further study is necessary to determine which resource channels they portray and the appropriate level of taxonomic resolution for this group. A graphic representation of the relative biomass of bacterivorous, fungivorous, and herbivorous nematodes provides a useful tool for assessing the importance of the bacterial, fungal, and plant resource channels in an extant food web.  相似文献   

13.
A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.  相似文献   

14.
Tampieri MP 《Parassitologia》2004,46(1-2):183-186
Dermatomycosis are mycotic diseases of skin caused by a few mycetes: dermatophytes, and some opportunistic fungi as Malassezia, Candida (not C. albicans), Trichosporon, Rhodutorula, Cryptococcus or Aspergillus, Geotrichum, Alternaria, etc. Dermatophytes are a group of closely related filamentous fungi that invade keratinized tissue (skin, hair, nails) of humans and other animals and produce infection called dermatophytosis or ringworm or "tinea". The etiological agents of dermatophytosis are classified in three genera: Microsporum, Trichophyton and Epidermophyton (Deuteromycetes). On the basis of their primary habitat dermatophytes are divided in Anthropophilic dermatophytes (parasitic organisms that infect humans), Zoophilic dermatophytes (parasitic organisms that infect animals, but also humans: agents of zoonosis) and Geophilic dermatophytes (saprobic fungi associated with keratinous materials in soil). In the soil there are also structure associated with contagion, ("spore", "arthroconidium", or "clamydospore") of anthropophilic and zoophilic dermatophytes that may persist for years, in the environment, in hair or skin scales. Since on the skin of animals there are many saprobic organisms (Malassezia) and many fungi may infect the fur, it is important to make an accurate diagnosis. Dermatophytosis are communicable diseases acquired from infected animals or from fomites. Infections caused by dermatophytes is a ringworm. These infections may range from mild and superficial, almost subclinical, to a few areas of scaling to a highly inflammatory reaction with extensive areas of scarring and alopecia. Granuloma formations (mycetoma-like) may occur especially in cats. Dermatophytes, as filamentous fungi, undergo radial fungi: collection of skin material is best made by collecting the scales near the edges of the rings. Hairs are best sampled by plucking; a scalpel may be used to scrape scales; brushes have also been used. Sample materials are best transported in dry packet. The Wood's light may be used to identify infected fluorescent hairs. Direct microscopy, although false negative up to 50% of cases, is a highly efficient screening technique. Scraping and hairs should mixed to 10-15% KOH. Culture is a valuable adjunct to direct microscopy and is essential to identify more dermatophytes. A medium selective against most nondermatophytic moulds and bacteria is used as a primary isolation medium. Many typical isolates of common dermatophytes can be identified directly from primary isolation media. Identification characters include: colony pigmentation, texture, morphological structure (macroconidia, microconidia, spirals, pectinate branches, etc). Nutritional requiment, growth in special media, "in vitro" perforation, mating studies are procedures used to identify atypical isolates. Serological approaches have revealed difficulties. Many kinds of molecular biologic techniques have been made available for clinical diagnosis recently; almost all of these techniques involve the polymerase chain reaction (PCR).  相似文献   

15.
The etiology of selenium-vitamin E (Se-E) deficiency diseases may be complex. Many of the syndromes involve combined deficiency of selenium and vitamin E. Selenium moves into the animal and human food chain from soil and plants, which may contain inadequate amounts of the nutrient in many areas of the world. Vitamin E may be in low concentration in many animal feeds unless supplements are added. Some syndromes, such as steatitis in cats, result from an increased requirement of vitamin E in diets that contain large amounts of polyunsaturated fatty acids, and these diseases will only respond to vitamin E administration. Deficiency syndromes in animals owing to pure Se deficiency are infrequent and have been produced mainly by laboratory studies utilizing extreme deficiency conditions. Other factors that may affect the occurrence of these deficiency diseases are concurrent dietary deficiency of S-containing amino acids, bioavailability of different forms of dietary Se, intake of compounds that antagonize Se (e.g., silver salts), and exposure to various prooxidant substances (e.g., iron compounds, oxygen, ozone, and various drugs). A wide variety of pathologic alterations occur in animals and humans with Se-E deficiency. Myocardial lesions are seen most frequently in calves, lambs, pigs, turkey poults, and ducklings. In humans, Keshan disease, an endemic cardiomyopathy in China, is attributed to Se deficiency. Necrosis of skeletal muscle is the most frequent lesion observed in animal species. Necrosis of smooth muscle of the gizzard and intestine may be a prominent lesion in turkey poults, ducklings, and quail. Other Se-E deficiency lesions include hepatic necrosis, gastric ulceration, intestinal and uterine lipofuscinosis, pancreatic damage, steatitis, exudative diathesis, encephalomalacia, and testicular necrosis. Selenium toxicosis is well characterized in animals and humans by neurological, hoof, and hair alterations.  相似文献   

16.
Among the many genera of free-living amoebae that exist in nature, members of only four genera have an association with human disease: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised humans. Balamuthia is also associated with disease in immunocompetent children, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in immunocompetent children and young adults. In addition to human infections, Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Sappinia diploidea is known, generalizations about the organism as an agent of disease are premature. In this review we summarize what is known of these free-living amoebae, focusing on their biology, ecology, types of disease and diagnostic methods. We also discuss the clinical profiles, mechanisms of pathogenesis, pathophysiology, immunology, antimicrobial sensitivity and molecular characteristics of these amoebae.  相似文献   

17.
An organism's reproductive mode is believed to be a major factor driving its genome evolution. In theory, sexual inbreeding and asexuality are associated with lower effective recombination levels and smaller effective population sizes than sexual outbreeding, giving rise to reduced selection efficiency and genetic hitchhiking. This, in turn, is predicted to result in the accumulation of deleterious mutations and other genomic changes, for example the accumulation of repetitive elements. Empirical data from plants and animals supporting/refuting these theories are sparse and have yielded few conclusive results. A growing body of data from the fungal kingdom, wherein reproductive behavior varies extensively within and among taxonomic groups, has provided new insights into the role of mating systems (e.g., homothallism, heterothallism, pseudohomothallism) and asexuality, on genome evolution. Herein, we briefly review the theoretical relationships between reproductive mode and genome evolution and give examples of empirical data on the topic derived to date from plants and animals. We subsequently focus on the available data from fungi, which suggest that reproductive mode alters the rates and patterns of genome evolution in these organisms, e.g., protein evolution, mutation rate, codon usage, frequency of genome rearrangements and repetitive elements, and variation in chromosome size.  相似文献   

18.
Primates are known for their use of the hand in many activities including food grasping. Yet, most studies concentrate on the type of grip used. Moreover, kinematic studies remain limited to a few investigations of the distal elements in constrained conditions in humans and macaques. In order to improve our understanding of the prehension movement in primates, we analyse here the behavioural strategies (e.g., types of grip, body postures) as well as the 3D kinematics of the whole forelimb and the trunk during the prehension of small static food items in five primate species in unconstrained conditions. All species preferred the quadrupedal posture except lemurs, which used a typical crouched posture. Grasp type differed among species, with smaller animals (capuchins and lemurs) using a whole-hand grip and larger animals (humans, gorillas, chimpanzees) using predominantly a precision grip. Larger animals had lower relative wrist velocities and spent a larger proportion of the movement decelerating. Humans grasped food items with planar motions involving small joint rotations, more similar to the smaller animals than to gorillas and chimpanzees, which used greater rotations of both the shoulder and forearm. In conclusion, the features characterising human food prehension are present in other primates, yet differences exist in joint motions. These results provide a good basis to suggest hypotheses concerning the factors involved in driving the evolution of grasping abilities in primates.  相似文献   

19.
《Anthrozo?s》2013,26(1):45-59
ABSTRACT

Attitudes toward animals are influenced by both animal traits (e.g., similarity to humans, aesthetic quality, size) and individual human attributes (e.g., gender, age, educational level, cultural factors). Although the examination of children's interest in animals, and their preference for different species, may evidence specific trends and help explain the development of attitudes, the vast majority of research has not considered children younger than 6 years. The present study was aimed at assessing preferences for a variety of animal species in a sample of 3–6 year-old Italian children, using a forced-choice task and visual aids (images of the animals). Pictures of 48 animal species, ranging from mammals to invertebrates, were presented to the children. Two photographic stimuli were simultaneously displayed and participants were asked to indicate their preference. Results show that the children preferred higher-order species, and domestic over wild animals. Apart from a few exceptions, invertebrates were the most disliked group of species among the children. Girls showed more negative and fear-related attitudes than the boys. Results are discussed taking into account different factors that may affect children's preferences for various animal species, that is, similarity to humans and aesthetical appeal. Greater knowledge on early attitudes toward animals has implications for promoting interest in animals and for building educational interventions for kindergarten children. This is particularly important in light of the growing use of different animals in educational and therapeutic contexts, as well as from an animal welfare perspective.  相似文献   

20.
Tampieri MP 《Parassitologia》2006,48(1-2):121-124
Mycetes are ubiquitous organisms that can cause mycoses in human and animals. The role of animals in the epidemiology of human mycoses in urban areas is multiform, but here will be discuss only two features: A) animals as vectors of mycoses and B) animal substrates as growth factor of pathogenic fungi. A) Animals as vectors of mycoses: this role is important as zoofilic dermatophytes are very important agents of zoonosis; the urban dermatophytozoonoses are prevalent caused by Microsporum canis which is prevalent in cats and dogs. Cats are often asymptomatic carriers. The pattern of human dermatomycoses has changed in Italy during the past century: at the beginning of the century anthropophilic fungi were prevalent while at present the zoophilic fungi are the most important causes. B) Animal substrata as growth factor of pathogenic fungi: soil "animalization" (i.e., the addition of such debris as hair, skin scales, dropping and other organic matters) creates an optimal substratum for the growth and the multiplication of geophilic or saprophyitic fungi, such as Microsporum gypseum and Cryptococcus neoformans. The present human lifestyle, which favours a an overpopulation of birds, wild animals, domestic mammals and sinanthropic together with man in crowded areas seems to favour the formation of environments adapted to the abundant growth of some pathogenic fungi with consequent infection for man and animals. Finally, an environment heavily populated by fungi can cause allergic pulmonary reactions as well as reactions in other organs and tissues. The control of human and animal fungi, and the efficient use of a monitoring system require ample knowledge of mycological problems both in human and veterinary medicine and of efficient laboratories capable of resolving the needs of both disciplines. Close collaboration between veterinarians, doctors and mycologists is necessary in order to resolve health problems linked to mycosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号