首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by numerous clinical and cellular features. The pleiotropic nature of the AT syndrome attests to the multiple roles of ATM, the protein codified by the gene altered in AT patients. We investigated if different mutations of ATM could reflect on different alterations of nuclear architecture and chromatin organization. We selected three lymphoblastoid cell lines isolated from AT patients affected by different mutations of ATM gene and one healthy control. We characterized the in situ chromatin structure of each cell line by a biophysical approach: (1) we evaluated the rearrangements of the chromatin domains at the level of single cell by quantitative fluorescence microscopy; (2) we analysed the changes of the average chromatin condensation by differential scanning calorimetry. The results show that the three different ATM mutations produce significant modifications of both nuclear architecture and chromatin condensation.  相似文献   

2.
Homologous recombination between identical stretches of DNA depends on the coordinated action of many tightly regulated proteins. Cellular defects in homologous recombination are strongly associated with increased genomic instability and tumorigenesis. In cells of the cancer-prone syndrome ataxia telangiectasia (A-T), increased intrachromosomal recombination has been demonstrated, while extrachromosomal recombination has been discussed controversially. We constructed a novel, episomally replicating pGrec recombination vector containing two mutated alleles of the enhanced green fluorescent protein (eGFP) gene. Homologous recombination can reconstitute functional wildtype eGFP, thus allowing detection of recombination events based on cellular eGFP fluorescence. Using an isogenic cell pair of A-T fibroblasts and derivatives complemented by an ATM expression vector, we were able to demonstrate in A-T cells high extrachromosomal recombination rates, which are suppressed upon ectopic ATM expression. We thus found that ATM deficiency increases spontaneous recombination not only in intrachromosomal but also in extrachromosomal substrates, suggesting that lack of ATM increases homologous recombination independent of the chromatin structure.  相似文献   

3.
Cells derived from ataxia telangiectasia (A-T) patients show a prominent defect at chromosome ends in the form of chromosome end-to-end associations, also known as telomeric associations, seen at G(1), G(2), and metaphase. Recently, we have shown that the ATM gene product, which is defective in the cancer-prone disorder A-T, influences chromosome end associations and telomere length. A possible hypothesis explaining these results is that the defective telomere metabolism in A-T cells are due to altered interactions between the telomeres and the nuclear matrix. We examined these interactions in nuclear matrix halos before and after radiation treatment. A difference was observed in the ratio of soluble versus matrix-associated telomeric DNA between cells derived from A-T and normal individuals. Ionizing radiation treatment affected the ratio of soluble versus matrix-associated telomeric DNA only in the A-T cells. To test the hypothesis that the ATM gene product is involved in interactions between telomeres and the nuclear matrix, we examined such interactions in human cells expressing either a dominant-negative effect or complementation of the ATM gene. The phenotype of RKO colorectal tumor cells expressing ATM fragments containing a leucine zipper motif mimics the altered interactions of telomere and nuclear matrix similar to that of A-T cells. A-T fibroblasts transfected with wild-type ATM gene had corrected telomere-nuclear matrix interactions. Further, we found that A-T cells had different micrococcal nuclease digestion patterns compared to normal cells before and after irradiation, indicating differences in nucleosomal periodicity in telomeres. These results suggest that the ATM gene influences the interactions between telomeres and the nuclear matrix, and alterations in telomere chromatin could be at least partly responsible for the pleiotropic phenotypes of the ATM gene.  相似文献   

4.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which is activated in response to genotoxic insults by binding damaged DNA and attaching polymers of ADP-ribose to nuclear proteins at the expense of its substrate NAD+. In persons affected with ataxia telangiectasia (A-T), associated mutations in the ataxia telangiectasia mutated gene render cells unable to cope with the genotoxic stresses from ionizing radiation and oxidative damage, thus resulting in a higher concentration of unrepaired DNA damage and the activation of PARP in an uncontrolled manner. In primary A-T fibroblasts, we observed a 58-96% increase in PARP activity and a concomitant loss of cellular NAD+ and ATP content. PARP protein by Western blot analysis increased only slightly in these cells, supporting the observation that the steady state levels of DNA damage is higher in A-T cells than in normals. When treated with PARP inhibitors 3-aminobenzamide or 1,5-dihydroisoquinoline, cellular growth rates reached those observed in normal fibroblast cultures. The improvement of cellular growth and NAD+ levels in A-T cells with PARP inhibition suggests that the cellular metabolic status of A-T cells is compromised and the inhibition of PARP may relieve some of the drain on cellular pyridine nucleotides and ATP. Thus, therapy utilizing PARP inhibitors may provide a benefit for individuals affected with A-T.  相似文献   

5.
Mascetti G  Carrara S  Vergani L 《Cytometry》2001,44(2):113-119
BACKGROUND: This study investigated the relationship between chromatin compactness, which is directly related to chromatin condensation, and DAPI uptake. Materials and Methods For the structural characterization of in situ chromatin, we used fluorescence microscopy and differential scanning calorimetry on calf thymocytes. The compactness of nuclear chromatin was altered by permeabilizing native cells with NP40 detergent. A time-dependent analysis of detergent effects was performed by acquiring nuclear images at different time intervals after permeabilization. In order to compare nuclei of different sizes, we implemented a geometrical correction in the calculation of the integrated fluorescence intensity. For a quantitative evaluation of chromatin condensation we introduced two new parameters, "average chromatin packing ratio" and "average dye spatial density." RESULTS: This approach allowed us to estimate the effects of NP40 detergent at the level of in situ chromatin. Detergent effects could be modulated by changing the ionic composition of buffer. Moreover, changes of chromatin condensation induced by detergent were inversely related to modifications of nuclear volume. CONCLUSIONS: The combination of complementary information obtained by fluorescence microscopy, supported by a proper geometrical correction, and differential calorimetry allowed us to interpret the patterns of fluorescence intensities inside the nucleus in terms of chromatin structure.  相似文献   

6.
Ataxia telangiectasia (AT) is a rare autosomal recessive disease resulting in progressive degeneration of multiple systems in the body. Both A-T homozygote and heterozygote are at increased risk of developing malignancy. We report a family in which three generations were affected by this disorder. Our index case is a 12-year-old female child, born of second degree consanguineous marriage diagnosed to have ataxia telangiectasia at the age of four years, now presented with fever and neck swelling of one month duration. Family history suggestive of ataxia telangiectasia in maternal uncle and younger sibling was present. History of premature coronary artery disease and death in paternal grandfather was present. On evaluation, child was diagnosed to have Alk negative anaplastic large T cell lymphoma. Management included genetic counseling, examination of all the family members, identification of A-T homozygote and providing appropriate care, regular surveillance of the heterozygote for malignancy.  相似文献   

7.
We report crosstalk between three senescence-inducing conditions, DNA damage response (DDR) defects, oxidative stress (OS) and nuclear shape alterations. The recessive autosomal genetic disorder Ataxia telangiectasia (A-T) is associated with DDR defects, endogenous OS and premature ageing. Here, we find frequent nuclear shape alterations in A-T cells, as well as accumulation of the key nuclear architecture component lamin B1. Lamin B1 overexpression is sufficient to induce nuclear shape alterations and senescence in wild-type cells, and normalizing lamin B1 levels in A-T cells reciprocally reduces both nuclear shape alterations and senescence. We further show that OS increases lamin B1 levels through p38 Mitogen Activated Protein kinase activation. Lamin B1 accumulation and nuclear shape alterations also occur during stress-induced senescence and oncogene-induced senescence (OIS), two canonical senescence situations. These data reveal lamin B1 as a general molecular mediator that controls OS-induced senescence, independent of established Ataxia Telangiectasia Mutated (ATM) roles in OIS.  相似文献   

8.
Despite the recent improvement in understanding the higher-order structure of chromatin fibers, the organization of interphase chromosomes in specific nuclear domains emerged only recently and it is still controversial. This study took advantage of an integrated approach using complementary techniques in order to investigate the structure and organization of chromatin in interphase nucleus. Native CHO-K1 cells were progressively heated from 310 K to 410 K and the effects of increasing temperatures on nuclear chromatin were analyzed in situ by means of cytometric and calorimetric techniques. Distribution and organization of chromatin domains were analyzed by Fluorescence microscopy, while the mean condensation of nuclear chromatin was measured by Differential scanning calorimetry. The results show as changes of nuclear structures (envelope and matrix, namely) affect significantly organization and condensation of in situ chromatin. Moreover when volume is modified by an external force (the temperature gradient in our case) we observe significant alterations of chromatin structure. These data are in accordance with the hypothesis of an inverse relationship between nuclear volume and chromatin condensation.  相似文献   

9.
The possibility that the radiosensitivity of lymphoblastoid cell lines from patients with ataxia telangiectasia (A-T) is due to an aberrant content of histones has been examined. The histone pattern of lymphoblastoid cell lines derived from A-T patients was found to be indistinguishable from that obtained from normal individuals. X-ray irradiation led to a greater decrease in cell growth rate in the A-T cells than in the normal cells but was accompanied by a greater decrease of DNA synthesis rate in the normal cells. This difference in radiosensitivity was not reflected in differences in the content or rates of synthesis of histones or of major non-histone proteins in these cells. Reduction in the rate of DNA synthesis was not associated with the appearance of the lysine-rich histone variant H1. We conclude that the hypersensitivity to ionizing radiation in A-T cells is not due to fundamental differences in the composition or synthesis of the major chromosomal proteins.  相似文献   

10.
Summary Partially purified B cells from ataxia telangiectasia (A-T) patients and normal individuals were stimulated with Staphylococcus aureus Cowan I organisms (SAC). High levels of apparently random rearrangements were seen in the A-T B cells only. In addition a t(2;14)(p11;q32) rearrangement was identified in B cells from more than one patient.  相似文献   

11.
The human disorder ataxia telangiectasia (AT), which is characterized by genetic instability and neurodegeneration, results from mutation of the ataxia telangiectasia mutated (ATM) kinase. The loss of ATM leads to cell-cycle checkpoint deficiencies and other DNA damage signaling defects that do not fully explain all pathologies associated with A-T including neuronal loss. In addressing this enigma, we find here that ATM suppresses DNA double-strand break (DSB) repair by microhomology-mediated end joining (MMEJ). We show that ATM repression of DNA end-degradation is dependent on its kinase activities and that Mre11 is the major nuclease behind increased DNA end-degradation and MMEJ repair in A-T. Assessment of MMEJ by an in vivo reporter assay system reveals decreased levels of MMEJ repair in Mre11-knockdown cells and in cells treated with Mre11-nuclease inhibitor mirin. Structure-based modeling of Mre11 dimer engaging DNA ends suggests the 5' ends of a bridged DSB are juxtaposed such that DNA unwinding and 3'-5' exonuclease activities may collaborate to facilitate simultaneous pairing of extended 5' termini and exonucleolytic degradation of the 3' ends in MMEJ. Together our results provide an integrated understanding of ATM and Mre11 in MMEJ: ATM has a critical regulatory function in controlling DNA end-stability and error-prone DSB repair and Mre11 nuclease plays a major role in initiating MMEJ in mammalian cells. These functions of ATM and Mre11 could be particularly important in neuronal cells, which are post-mitotic and therefore depend on mechanisms other than homologous recombination between sister chromatids to repair DSBs.  相似文献   

12.
Cells from patients with the genetic disease ataxia telangiectasia are hypersensitive to the DNA-breaking agents X-rays, bleomycin and neocarzinostatin, and show reduced inhibition of DNA synthesis after treatment with these agents, as compared to normal cells. The rate of replicon initiation and chain elongation was measured shortly after brief exposure of two normal and two ataxia telangiectasia fibroblast strains to low doses (0.10-0.30 microgram/ml) of neocarzinostatin, by means of alkaline sucrose gradient analysis. Neocarzinostatin was found to inhibit both initiation and elongation, and both components of DNA synthesis were more resistant to this inhibition in the A-T strains.  相似文献   

13.
Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.  相似文献   

14.
The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival.  相似文献   

15.
Cells from patients with the genetic disease ataxia telangiectasia are hypersensitive to the DNA-breaking agents X-rays, bleomycin and neocarzinostatin, and show reduced inhibition of DNA synthesis after treatment with these agents, as compared to normal cells. The rate of replicon initiation and chain elongation was measured shortly after brief exposure of two normal and two ataxia telangiectasia fibroblast strains to low doses (0.10–0.30 μg/ml) of neocarzinostatin, by means of alkaline sucrose gradient analysis. Neocarzinostatin was found to inhibit both initiation and elongation, and both components of DNA synthesis were more resistant to this inhibition in the A-T strains.  相似文献   

16.
To determine whether the acquisition of meiotic competence during the growth phase of oogenesis is associated with the appearance of M-phase characteristics, oocytes obtained from 13- to 30-day-old mice were evaluated by fluorescence microscopy with respect to chromatin and microtubule organization , in vitro maturation ability, and the distribution of M-phase phosphoproteins. Meiotically incompetent oocytes were distinguished from their competent counterparts in displaying elaborate interphase-like arrays of cytoplasmic microtubules and dispersed germinal vesicle chromatin. Meiotically competent oocytes were larger in size, exhibited condensation of chromatin around the nucleolus, and displayed a progressive diminution of cytoplasmic microtubules in conjunction with the appearance of multiple microtubule organizing centers. After 24 hr in culture, medium- to large-sized oocytes exhibiting perinucleolar chromatin condensation resume meiosis whereas smaller meiotically incompetent oocytes retain GVs with diffuse chromatin. Moreover, indirect immunofluorescence studies using the M-phase phosphoprotein specific monoclonal antibody MPM-2 indicate that the appearance of reactive cytoplasmic foci is directly correlated with nuclear changes characteristic of meiotically competent oocytes. Thus, the earliest transition to a meiotically competent state during oocyte growth in the immature mouse ovary is characterized by stage-specific and coordinated modifications of nuclear and cytoplasmic components.  相似文献   

17.
The controlling role of ATM in homologous recombinational repair of DNA damage   总被引:32,自引:0,他引:32  
The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.  相似文献   

18.
The product of the ATM gene, mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a key role in the detection and repair of DNA double-strand breaks. A-T is defined by progressive cerebellar ataxia, telangiectasia, sensitivity to ionising radiation and genomic instability with cancer predisposition. On the other hand, increased angiogenesis is essential for tumor growth and metastasis. The aim of this study was to investigate ATM expression in breast carcinomas and its relationship to neoangiogenesis. METHODS AND RESULTS: Fifty-two breast tumors from 51 patients, 38 of them with concomitant in situ component (CIS), were analyzed by immunohistochemistry for the expression of ATM. CD34 expression was used for the morphometric evaluation of vasculature. ATM was positive in 1 to 10% of normal epithelial cells. ATM expression was reduced in 55.8% of infiltrating carcinomas, non-reduced in 34.6%, and increased in 9.6%. Expression of ATM in CIS was similar to the infiltrating component in 71% of cases and reduced in 23.7% of them. High-grade ductal infiltrating carcinomas showed lower ATM expression than low-grade ones. Reduced ATM expression also correlated with increased microvascular area. CONCLUSIONS: Reduced ATM expression in breast carcinomas correlated with tumor differentiation and increased microvascular parameters, supporting its role in neoangiogenesis and tumor progression in breast carcinogenesis.  相似文献   

19.
Ataxia-telangiectasia, an evolving phenotype   总被引:10,自引:0,他引:10  
Chun HH  Gatti RA 《DNA Repair》2004,3(8-9):1187-1196
Ataxia-telangiectasia (A-T) is a progressive neurodegenerative disorder, with onset in early childhood and a frequency of approximately 1 in 40,000 births in the United States. A-T is seen among all races and is most prominent among ethnic groups with a high frequency of consanguinity. The syndrome includes: progressive cerebellar ataxia, dysarthric speech, oculomotor apraxia, choreoathetosis and, later, oculocutaneous telangiectasia. Immunodeficiency with sinopulmonary infections, cancer susceptibility (usually lymphoid), and sensitivity to ionizing radiation are also characteristic. Laboratory findings include: (1) elevated alphafetoprotein (AFP), (2) cerebellar atrophy on magnetic resonance imaging, (3) reciprocal translocations between chromosomes 7 and 14 in lymphocytes, (4) absence or dysfunction of the ATM protein, (5) radiosensitivity, as demonstrated by colony survival assay (CSA), and (6) mutations in the ATM gene. The latter are usually truncating or splicing mutations; approximately 10% are missense mutations. Mutations are found across the entire gene. Almost all recurring mutations are found on unique haplotypes that represent founder effects and ancestral relationships between patients. In addition to radiosensitivity and sensitivity to radiomimetic chemicals, the phenotype of A-T cells includes defective damage-induced activation of the cell cycle checkpoints at G1, S and G2/M. With the aid of molecular testing, A-T can now be distinguished from other autosomal recessive cerebellar ataxias (ARCAs) such as Friedreich ataxia, Mre11 deficiency (AT-like disease), and the oculomotor apraxias 1 (aprataxin deficiency) and 2 (senataxin deficiency). Other "A-T variants" include: (1) Nijmegen breakage syndrome (NBS) or nibrin/Nbs1 deficiency, with microcephaly and mental retardation but without ataxia, apraxia, or telangiectasia, and 2) A-T(Fresno), a phenotype that combines features of both NBS and A-T, with mutations in the ATM gene. The term "A-T variant" has a diminishing usefulness.  相似文献   

20.
Cells derived from a patient with severe chromosomal breakage, immunodeficiency, and growth retardation were found to resemble those from individuals with ataxia telangiectasia (A-T) in terms of their sensitivity to cell killing and the induction of cytogenic abnormalities by X-rays. Their response to other DNA-damaging agents, including 254-nm UV light, mitomycin C, MNNG, and bleomycin was also A-T-like. In contrast to classical A-T, however, X-irradiated cells exhibited a G1 block after release from density inhibition of growth that was not significantly different from that of normal controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号