共查询到20条相似文献,搜索用时 0 毫秒
1.
Import of cytochrome c into mitochondria. Cytochrome c heme lyase 总被引:16,自引:0,他引:16
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5--10-fold by NADH greater than NADPH greater than glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c. 相似文献
2.
The import of cytochrome c into Neurospora crassa mitochondria was examined at distinct stages in vitro. The precursor protein, apocytochrome c, binds to mitochondria with high affinity and specificity but is not transported completely across the outer membrane in the absence of conversion to holocytochrome c. The bound apocytochrome c is accessible to externally added proteases but at the same time penetrates far enough through the outer membrane to interact with cytochrome c heme lyase. Formation of a complex in which apocytochrome c and cytochrome c heme lyase participate represents the rate-limiting step of cytochrome c import. Conversion from the bound state to holocytochrome c, on the other hand, occurs 10-30-fold faster. Association of apocytochrome c with cytochrome c heme lyase also takes place after solubilizing mitochondria with detergent. We conclude that the bound apocytochrome c, spanning the outer membrane, forms a complex with cytochrome c heme lyase from which it can react further to be converted to holocytochrome c and be translocated completely into the intermembrane space. 相似文献
3.
4.
The formation of cytochrome c oxidase in yeast is dependent on oxygen. In order to examine the oxygen-dependent formation of the active enzyme, the effect of oxygen on the synthesis and the assembly of cytochrome c oxidase subunits was studied. Pulse-labeling experiments revealed that oxygen has no significant immediate effect on the synthesis of the three mitochondrially made subunits I to III; however, its presence causes subunits I and II to form a complex with the cytoplasmically made subunits VI and VII. This "assembly-inducing" effect can be demonstrated with intact yeast cells as well as with isolated mitochondria. It is independent of cytoplasmic or mitochondrial protein synthesis. After anaerobic growth for 10 or more generations, the intracellular concentrations of individual cytochrome c oxidase subunits drop 10- to 100-fold. Most of these residual subunits are not assembled within a functional cytochrome c oxidase molecule. 相似文献
5.
Import of cytochrome c heme lyase into mitochondria: a novel pathway into the intermembrane space. 总被引:2,自引:3,他引:2
下载免费PDF全文

Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane. 相似文献
6.
A mutant of Neurospora crassa deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria 总被引:6,自引:0,他引:6
F E Nargang M E Drygas P L Kwong D W Nicholson W Neupert 《The Journal of biological chemistry》1988,263(19):9388-9394
The nuclear cyt-2-1 mutant of Neurospora crassa is characterized by a gross deficiency of cytochrome c (Bertrand, H., and Collins, R. A. (1978) Mol. Gen. Genet. 166, 1-13). The mutant produces mRNA that can be translated into apocytochrome c in vitro. Apocytochrome c is also synthesized in vivo in cyt-2-1, but it is rapidly degraded and thus does not accumulate in the cytosol. Mitochondria from wild-type cells bind apocytochrome c made in vitro from either wild-type or cyt-2-1 mRNA and convert it to holocytochrome c. This conversion depends on the addition of heme by cytochrome c heme lyase and is coupled to translocation of cytochrome c into the intermembrane space. Mitochondria from the cyt-2-1 strain are deficient in the ability to bind apocytochrome c. They are also completely devoid of cytochrome c heme lyase activity. These defects explain the inability of the cyt-2-1 mutant to convert apocytochrome c to the holo form and to import it into mitochondria. 相似文献
7.
Coupling of heme attachment to import of cytochrome c into yeast mitochondria. Studies with heme lyase-deficient mitochondria and altered apocytochromes c 总被引:13,自引:0,他引:13
Cytochrome c is synthesized in the cytoplasm as apocytochrome c, lacking heme, and then imported into mitochondria. The relationship between attachment of heme to the apoprotein and its import into mitochondria was examined using an in vitro system. Apocytochrome c transcribed and translated in vitro could be imported with high efficiency into mitochondria isolated from normal yeast strains. However, no import of apocytochrome c occurred with mitochondria isolated from cyc3- strains, which lack cytochrome c heme lyase, the enzyme catalyzing covalent attachment of heme to apocytochrome c. In addition, amino acid substitutions in apocytochrome c at either of the 2 cysteine residues that are the sites of the thioether linkages to heme, or at an immediately adjacent histidine that serves as a ligand of the heme iron, resulted in a substantial reduction in the ability of the precursor to be translocated into mitochondria. Replacement of the methionine serving as the other iron ligand, on the other hand, had no detectable effect on import of apocytochrome c in this system. Thus, covalent heme attachment is a required step for import of cytochrome c into mitochondria. Heme attachment, however, can occur in the absence of mitochondrial import since we have detected CYC3-encoded heme lyase activity in solubilized yeast extracts and in an Escherichia coli expression system. These results suggest that protein folding triggered by heme attachment to apocytochrome c is required for import into mitochondria. 相似文献
8.
Biogenesis of cytochrome c1. Role of cytochrome c1 heme lyase and of the two proteolytic processing steps during import into mitochondria 总被引:9,自引:0,他引:9
The biogenesis of cytochrome c1 involves a number of steps including: synthesis as a precursor with a bipartite signal sequence, transfer across the outer and inner mitochondrial membranes, removal of the first part of the presequence in the matrix, reexport to the outer surface of the inner membrane, covalent addition of heme, and removal of the remainder of the presequence. In this report we have focused on the steps of heme addition, catalyzed by cytochrome c1 heme lyase, and of proteolytic processing during cytochrome c1 import into mitochondria. Following translocation from the matrix side to the intermembrane-space side of the inner membrane, apocytochrome c1 forms a complex with cytochrome c1 heme lyase, and then holocytochrome c1 formation occurs. Holocytochrome c1 formation can also be observed in detergent-solubilized preparations of mitochondria, but only after apocytochrome c1 has first interacted with cytochrome c1 heme lyase to produce this complex. Heme linkage takes place on the intermembrane-space side of the inner mitochondrial membrane and is dependent on NADH plus a cytosolic cofactor that can be replaced by flavin nucleotides. NADH and FMN appear to be necessary for reduction of heme prior to its linkage to apocytochrome c1. The second proteolytic processing of cytochrome c1 does not take place unless the covalent linkage of heme to apocytochrome c1 precedes it. On the other hand, the cytochrome c1 heme lyase reaction itself does not require that processing of the cytochrome c1 precursor to intermediate size cytochrome c1 takes place first. In conclusion, cytochrome c1 heme lyase catalyzes an essential step in the import pathway of cytochrome c1, but it is not involved in the transmembrane movement of the precursor polypeptide. This is in contrast to the case for cytochrome c in which heme addition is coupled to its transport directly across the outer membrane into the intermembrane space. 相似文献
9.
M Erecińska R Oshino D F Wilson 《Biochemical and biophysical research communications》1980,92(3):743-748
[3H]-p-Azidophenacylbromide-(methyl-4-mercaptobutyrimidate)-cytochrome from was prepared and its properties determined. The radioactive photoaffinity-labeled cytochrome was linked by irradiation into a covalent complex with cytochrome oxidase. Analysis of the complex on SDS-polyacrylamide gels showed that cytochrome bound to one of the smaller subunits of cytochrome oxidase with an apparent molecular weight of 15,000. 相似文献
10.
Previous studies introduced cytochrome c into intact cells via the disruptive techniques of microinjection or electroporation to provide support for the hypothesis that, in whole cells, cytochrome c release from mitochondria triggers caspase activation and other degradative changes. However, the types of measurements that could be undertaken with these techniques was limited. We used the simple and relatively gentle technique of pinocytic loading to demonstrate that, in intact cells, cytosolic cytochrome c specifically induced activation of caspase-3- and -9-like enzymes, and a loss of mitochondrial polarization coincident with an increase in mitochondrial permeability. Our results support the prediction from in vitro studies that activation of caspases-3 and -9 is downstream of cytochrome c release and provide the first direct evidence that, in whole cells, cytochrome c-dependent caspase-activation can exert a feedback effect to elicit mitochondrial permeabilization and collapse of the mitochondrial trans-membrane potential. 相似文献
11.
Mechanisms of cytochrome c release from mitochondria 总被引:13,自引:0,他引:13
Garrido C Galluzzi L Brunet M Puig PE Didelot C Kroemer G 《Cell death and differentiation》2006,13(9):1423-1433
In healthy cells, cytochrome c (Cyt c) is located in the mitochondrial intermembrane/intercristae spaces, where it functions as an electron shuttle in the respiratory chain and interacts with cardiolipin (CL). Several proapoptotic stimuli induce the permeabilization of the outer membrane, facilitate the communication between intermembrane and intercristae spaces and promote the mobilization of Cyt c from CL, allowing for Cyt c release. In the cytosol, Cyt c mediates the allosteric activation of apoptosis-protease activating factor 1, which is required for the proteolytic maturation of caspase-9 and caspase-3. Activated caspases ultimately lead to apoptotic cell dismantling. Nevertheless, cytosolic Cyt c has been associated also to vital cell functions (i.e. differentiation), suggesting that its release not always occurs in an all-or-nothing fashion and that mitochondrial outer membrane permeabilization may not invariably lead to cell death. This review deals with the events involved in Cyt c release from mitochondria, with special attention to its regulation and final consequences. 相似文献
12.
Ubiquinol-cytochrome-c oxidoreductase has been isolated from potato (Solanum tuberosum L.) mitochondria by cytochrome-c affinity chromatography and gel-filtration chromatography. The procedure, which up to now only proved applicable to Neurospora, yields a highly pure and active protein complex in monodisperse state. The molecular mass of the purified complex is about 650 kDa, indicating that potato cytochrome c reductase occurs as a dimer. Upon reconstitution into phospholipid membranes, the dimeric enzyme catalyzes electron transfer from a synthetic ubiquinol to equine cytochrome c with a turnover number of 50 s-1. The activity is inhibited by antimycin A and myxothiazol. A myxothiazol-insensitive and antimycin-sensitive transhydrogenation reaction, with a turnover number of 16 s-1, can be demonstrated as well. The protein complex consists of ten subunits, most of which have molecular masses similar to those of the nine-subunit fungal enzyme. Individual subunits were identified immunologically and spectral properties of b and c cytochromes were monitored. Interestingly, an additional 'core' polypeptide which is not present in other cytochrome bc1 complexes forms part of the enzyme from potato. Antibodies raised against individual polypeptides reveal that the core proteins are clearly immuno-distinguishable. The additional subunit may perform a specific function and contribute to the high molecular mass which exceeds those reported for other cytochrome-c-reductase dimers. 相似文献
13.
In most eukaryotic organisms, cytochrome c(1) is encoded in the nucleus, translated on cytosolic ribosomes, and directed to its final destination in the mitochondrial inner membrane by a bipartite, cleaved, amino-terminal presequence. However, in the kinetoplastids and euglenoids, the cytochrome c(1) protein has been shown to lack a cleaved presequence; a single methionine is removed from the amino terminus upon maturation, and the sequence upstream of the heme-binding site is generally shorter than that of the other eukaryotic homologs. We have used a newly developed mitochondrial protein import assay system from Trypanosoma brucei to demonstrate that the T. brucei cytochrome c(1) protein is imported along a non-conservative pathway similar to that described for the inner membrane carrier proteins of other organisms. This pathway requires external ATP and an external protein receptor but is not absolutely dependent on a membrane potential or on ATP hydrolysis in the mitochondrial matrix. We propose the cytochrome c(1) import in T. brucei is a two-step process first involving a membrane potential independent translocation across the outer mitochondrial membrane followed by heme attachment and a membrane potential-dependent insertion into the inner membrane. 相似文献
14.
15.
When isolated mitochondria which have been labeled with [3H]leucine are solubilized and treated with anti-serum specific for cytochrome c oxidase, labeled polypeptides which correspond to the three largest polypeptides of this enzyme are immunoprecipitated. This indicates that the three largest polypeptides of cytochrome c oxidase which have Mr of 66,000, 39,000, and 23,000 are synthesized by isolated mitochondria whereas the three smallest ones which have Mr of 14,000, 12,500, and 10,000 are not. The smallest polypeptides are probably synthesized on cytoplasmic ribosomes as has been demonstrated in other systems by in vivo studies. These results are the first demonstration that isolated mammalian mitochondria are capable of synthesizing some of their own polypeptide components. The antiserum used in this study was prepared to highly purified cytochrome c oxidase (12.4 nmol of heme a + a3/mg of protein) from rat liver mitochondria. This antiserum gives a single precipitin line when tested by the Ouchterlony double diffusion technique. Its specificity has been demonstrated by the fact that it: 1) only precipitates heme a + a3, not hemes b, c, or c1, when added to solubilized mitochondria, 2) inhibits cytochrome c oxidase activity at least 85%, and 3) precipitates only those polypeptides found in purified cytochrome c oxidase when added to solubilized mitochondria labeled in vivo. 相似文献
16.
Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria. 总被引:2,自引:0,他引:2
We have examined the steady-state redox behavior of cytochrome c (Fec), Fea, and CuA of cytochrome c oxidase during steady-state turnover in intact rat liver mitochondria under coupled and uncoupled conditions. Ascorbate was used as the reductant and TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine) as the redox mediator. After elimination of spectroscopic interference from the oxidized form of TMPD, we found that Fea remains significantly more oxidized than previously thought. During coupled turnover, CuA always appears to be close to redox equilibrium with Fec. By increasing the amount of TMPD, both centers can be driven to fairly high levels of reduction while Fea remains relatively oxidized. The reduction level at Fea is close to a linear function of the enzyme turnover rate, but the levels at Fec and CuA do not keep pace with enzyme turnover. This behavior can be explained in terms of a redox equilibrium among Fec, CuA, and Fea, where Fea is the electron donor to the oxygen reduction site, but only if Fea has an effective Em (redox midpoint potential) of 195 mV. This is too low to be accounted for on the basis of nonturnover measurements and the effects of the membrane potential. However, if there is no equilibrium, the internal CuA----Fea electron-transfer rate constant must be slow in the time average (about 200 s-1). Other factors which might contribute to such a low Em are discussed. In the presence of uncoupler, this situation changes dramatically. Both Fec and CuA are much less reduced; within the resolution of our measurements (about 10%), we were unable to measure any reduction of CuA. Fea and CuA remain too oxidized to be in redox equilibrium with Fec during steady-state turnover. Furthermore, our results indicate that, in the uncoupled system, the (time-averaged) internal electron-transfer rate constants in cytochrome oxidase must be of the order of 2500 s-1 or higher. When turnover is slowed by azide, the relative redox levels at Fea and Fec are much closer to those predicted from nonturnover measurements. In presence of uncouplers, Fea is always more reduced than Fec, but in the absence of uncouplers, the two centers track together. Unlike the uninhibited, coupled system, the redox behavior here is consistent with the known effect of the electrical membrane potential on electron distribution in the enzyme. Interestingly, in these circumstances (azide and uncoupler present), Fea behaves as if it were no longer the kinetically controlling electron donor to the bimetallic center. 相似文献
17.
Deficiency in mRNA splicing in a cytochrome c mutant of neurospora crassa: importance of carboxy terminus for import of apocytochrome c into mitochondria. 总被引:4,自引:2,他引:4
下载免费PDF全文

Molecular cloning and characterization of cytochrome c cDNA clones of Neurospora crassa wild-type (74A) and a cytochrome c-deficient mutant (cyc1-1) are described. Southern blot analysis of genomic DNA indicates that only one cytochrome c gene exists in the N. crassa genome. The cDNA sequence of the wild-type cytochrome c confirmed the previously determined protein sequence. Sequence analysis of the cyc1-1 cDNA for cytochrome c revealed the presence of a larger open reading frame, owing to the presence of an unspliced intron in the 3' end of the coding region. Splicing of this intron is obviously prevented due to the presence of two base exchanges in the highly conserved intron consensus sequences. Consequently, cyc1-1 synthesizes apocytochrome c with an altered carboxy terminus, 19 amino acids longer than the wild-type cytochrome c, with the final 27 amino acids being of an unrelated sequence. This alteration in the carboxy terminus renders the apocytochrome c incompetent for binding to mitochondria and, consequently, import into mitochondria. Thus, unlike other mitochondrial precursor proteins, where it has been demonstrated that the amino terminus alone is sufficient to target the protein to the mitochondria, an intact carboxy terminus is required for efficient import of apocytochrome c into mitochondria. This is independent confirmation for the view that the import pathway of cytochrome c is unique with respect to all other mitochondrial proteins studied to date. 相似文献
18.
Ogura T 《Biochimica et biophysica acta》2012,1817(4):575-578
Recent applications of resonance Raman (RR) spectroscopy in investigations of cytochrome c oxidase (CcO) are reviewed. Red-excited RR spectra for the fully oxidized "as-isolated" CcO tuned to the ligand-to-metal charge transfer absorption band at 655nm exhibit a Raman band at 755cm(-1) assignable to the ν(OO) stretching mode of a peroxide. Binding of CN(-) diminishes the RR band concomitant with the loss of the charge transfer absorption band. This suggests that a peroxide forms a bridge between heme a(3) and Cu(B). Time-resolved RR spectroscopy of whole mitochondria identified a band at 571cm(-1) arising from the oxygenated intermediate at Δt=0.4, 0.6 and 1.4ms. Bands at 804 and 780cm(-1) of the P and F intermediates were observed at Δt=0.6 and 1.4ms, respectively. The coordination geometries of the three intermediates are essentially the same as the respective species observed for solubilized CcO. However, the lifetime of the oxygenated intermediate in mitochondria was significantly longer than the lifetime of this intermediate determined for solubilized CcO. This phenomenon is due either to the pH effect of mitochondrial matrix, the effect of ΔpH and/or ΔΨ across the membrane, or the effect of interactions with other membrane components and/or phospholipids. 相似文献
19.
Motion of cytochrome c bound to giant (2-10-micron diam) mitochondria isolated from the waterbug Lethocerus indicus was examined using the technique of fluorescence recovery after photobleaching. Fluorescent cytochrome c was exchanged for native cytochrome c through partly damaged outer membrane. Recovery profiles were not statistically different when the fluorescence from iron-free cytochrome c or fluorescein-labeled cytochrome c was used and were essentially the same in the presence or absence of an uncoupler. In the presence of excess porphyrin cytochrome c, the apparent diffusion coefficient was 6 X 10(-11) cm2/s in 0.3 M sucrose-mannitol-EDTA and 3 X 10(-10) cm2/s in 0.10 M KCl/0.10 M sucrose. At concentrations of porphyrin cytochrome c that are stoichiometric with cytochrome c oxidase and for mitochondria in which excess cytochrome c was washed away, two components were observed in the recovery profile. The diffusion coefficient of the fast component was 1 X 10(-10) cm2/s. The second component showed no recovery during the time scale of measurement (D less than 10(-12) cm2/s). We speculate on the origin of the immobile fraction. 相似文献
20.
Protons are transferred from the inner surface of cytochrome c oxidase to the active site by the D and K pathways, as well as from the D pathway to the outer surface by a largely undefined proton exit route. Alteration of the initial proton acceptor of the D pathway, D132, to alanine has previously been shown to greatly inhibit oxidase turnover and slow proton uptake into the D pathway. Here it is shown that the removal of subunit III restores a substantial rate of O(2) reduction to D132A. Presumably an alternative proton acceptor for the D pathway becomes active in the absence of subunit III and D132. Thus, in the absence of subunit III cytochrome oxidase shows greater flexibility in terms of proton entry into the D pathway. In the presence of DeltaPsi and DeltapH, turnover of the wild-type oxidase or D132A is slower in the absence of subunit III. Comparison of the turnover rates of subunit III-depleted wild-type oxidase to those of the zinc-inhibited wild-type oxidase containing subunit III, both reconstituted into vesicles, leads to the hypothesis that the absence of subunit III inhibits the ability of the normal proton exit pathway to take up protons from the outside in the presence of DeltaPsi and DeltapH. Thus, subunit III appears to affect the transfer of protons from both the inner and outer surfaces of cytochrome oxidase, perhaps accounting for the long-observed lower efficiency of proton pumping by the subunit III-depleted oxidase. 相似文献