首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. K. Gayed 《Mycopathologia》1962,18(4):271-279
Summary The pathogenicity of 6 strains ofHelminthosporium sativum P.K. & B. isolated from either oats, wheat or barley was studied. Oats was resistant to all strains followed by wheat while barley was susceptible. Barley variety Balder was the most resistant while Piroline was the most susceptible. Susceptibility of Piroline was manifested by higher percentage infection, bigger necrotic areas and wilting of the infected leaf. Toxic filtrates of the different strains could reproduce necrosis, wilting or chlorosis on cut leaves. Response of Balder and Piroline was similar in the filtrates of three strains, while in those of the other three Balder was more resistant. Formation of at least 2 toxic substances in the host tissues, one responsible for wilting and the other for necrosis, was suggested. No correlation was found between the dimensions of the spore or the number of its constituent cells and the virulence of the strain.  相似文献   

2.
Trees in the genus Populus and their interspecific hybrids are used across North America for fiber production and as a potential source of biofuel. Plantations of these species are severely impacted by a fungal pathogen, Sphaerulina musiva, the cause of leaf spot and stem canker. An inoculation protocol that does not rely on stem wounding to achieve infection was recently developed. Using this protocol two experiments were conducted to examine infection biology and disease development in the S. musiva-Populus interaction. In the first experiment non-wounded stems of one moderately resistant clone (NM6) and one susceptible clone (NC11505) were inoculated and examined by scanning electron microscopy at six different times (6 h, 12 h, 24 h, 72 h, 1 week, and 3 weeks) post-inoculation. The images indicate that the pathogen appears to enter host tissue through small openings and lenticels and that there are no significant differences in the penetration rate between the moderately resistant (NM6) and susceptible (NC11505) clones at 12 h post-inoculation. In a second experiment a histological comparison of stem cankers for resistant clone DN74 and susceptible clone NC11505 were conducted at three time points (3 weeks, 5 weeks, and 7 weeks) post-inoculation. Distinct differences in disease development were apparent between the resistant and susceptible clones at each time point, with the susceptible clone exhibiting a weak and delayed defense response. These results suggest, that following penetration, the pathogen may be able to interfere with the defense response in the susceptible host.  相似文献   

3.
BACKGROUND AND AIMS: Orobanche species represent major constraints to crop production in many parts of the world as they reduce yield and alter root/shoot allometry. Although much is known about the histology and effect of Orobanche spp. on susceptible hosts, less is known about the basis of host resistance to these parasites. In this work, histological aspects related to the resistance of some legumes to Orobanche crenata have been investigated in order to determine which types of resistance responses are involved in the unsuccessful penetration of O. crenata. METHODS: Samples of resistance reactions against O. crenata on different genotypes of resistant legumes were collected. The samples were fixed, sectioned and stained using different procedures. Sections were observed using a transmission light microscope and by epi-fluorescence. KEY RESULTS: Lignification of endodermal and pericycle host cells seems to prevent parasite intrusion into the root vascular cylinder at early infection stages. But in other cases, established tubercles became necrotic and died. Contrary to some previous studies, it was found that darkening at the infection site in these latter cases does not correspond to death of host tissues, but to the secretion of substances that fill the apoplast in the host-parasite interface and in much of the infected host tissues. The secretions block neighbouring host vessels. This may interfere with the nutrient flux between host and parasite, and may lead to necrosis and death of the developing parasite. CONCLUSIONS: The unsuccessful penetration of O. crenata seedlings into legume roots cannot be attributed to cell death in the host. It seems to be associated with lignification of host endodermis and pericycle cells at the penetration site. The accumulation of secretions at the infection site, may lead to the activation of xylem occlusion, another defence mechanism, which may cause further necrosis of established tubercles.  相似文献   

4.
N Benhamou  J Grenier  A Asselin    M Legrand 《The Plant cell》1989,1(12):1209-1221
An antiserum raised against a purified tobacco beta-1,3-glucanase (PR-N) was used to study the subcellular localization of enzyme in fungus-infected plant tissues by means of post-embedding immunogold labeling. In susceptible tomato plants, the enzyme accumulation was found to occur as a result of successful tissue colonization, whereas it appeared to be an early event associated with limited spread of the fungus in resistant tissues. Although marked differences between susceptible and resistant tomato cultivars were observed in the rate of production of beta-1,3-glucanase, the pattern of enzyme distribution was similar. The enzyme was found to accumulate predominantly in host cell walls and secondary thickenings of xylem vessels. By contrast, a very low amount of enzyme was associated with compound middle lamellae. The occurrence of beta-1,3-glucanase at the cell surface of invading fungi was an indication of their possible antifungal activity. A low enzyme concentration was detected in vacuoles of both healthy and infected tissues. In infected eggplant tissue, the pattern of beta-1,3-glucanase distribution was similar to that observed with tomato. Whether these hydrolases accumulate first in vacuoles and are subsequently conveyed toward the outside to participate in fungal wall lysis remains to be determined.  相似文献   

5.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

6.
Hypersensitive response, cell death and release of hydrogen peroxide as measures of host and non‐host defense mechanisms upon inoculation with the downy mildew pathogen Sclerospora graminicola were studied histochemically at the light microscopy level. The materials consisted of coleoptile tissues of the highly susceptible (cv. HB3), highly resistant (cv. IP18293) and induced resistant pearl millet host seedlings and non‐host sorghum (cv. SGMN10/8) and cotyledon of french bean (cv. S9). Resistance up to 80% protection against the downy mildew pathogen was induced in the highly susceptible HB3 cultivar of pearl millet by treating the seeds with 2% aqueous leaf extract of Datura metel for 3 h. Time course study with the pathogen inoculated highly resistant pearl millet cultivar revealed the appearance of hypersensitive response in 20% of seedlings as necrotic spots as early as 2 h after inoculation. In contrast, a similar reaction was observed in the highly susceptible pearl millet cultivar only 8 h after inoculation with the pathogen. In induced resistant seedlings, appearance of hypersensitive response was recorded 4 h after inoculation. Delayed hypersensitive response was observed in both the non‐host species at 10 h after inoculation. Hypersensitive response in the seedlings of the highly resistant pearl millet cultivar 24 h after inoculation showed 100% hypersensitive response, which was not observed in susceptible and non‐host species, although the induced resistant seedlings showed 90% hypersensitive response after that period of time. Cell death in the tissues of the test seedlings was also observed to change with time. Statistical analysis revealed that the tissues of highly resistant pearl millet seedlings required 2.9 h to attain 50% cell death. Tissues of induced resistant and highly susceptible pearl millet seedlings required 4.65 and 6.50 h respectively. In non‐hosts, 50% cell death was not recorded. Quantification of hydrogen peroxide in the tissue periplasmic spaces of the test seedlings revealed 2.94 h as the time required for 50% hydrogen peroxide accumulation in the tissues of highly resistant pearl millet seedlings. Tissues of induced resistant and highly susceptible pearl millet seedlings needed 3.76 and 5.5 h respectively. Fifty percent hydrogen peroxide localisation in non‐hosts could not be recorded. These results suggested the involvement of hydrogen peroxide, cell death and hypersensitive response in pearl millet host defense against S. graminicola.  相似文献   

7.
Scots pine trees belonging to clones considered to be resistant or susceptible after mass inoculations of Leptographium wingfieldii , a fungus associated with Tomericus piniperda , were submitted to a low density of fungal inoculations or beetle insertions. The length of the phloem-induced reaction zone, the fungal extension and fungal density inside the reaction zone, and the length of maternal galleries of T. piniperda were measured. The length of the phloem reaction zone never differed between resistant and susceptible trees. The density of the fungus mycelium in histological sections of the phloem, and the length of the maternal galleries in the reaction zone were higher in the susceptible trees than in the resistant ones. These factors could be good indicators of resistance of Scots pine to mass attacks.  相似文献   

8.
Anti-adhesion therapy of bacterial diseases: prospects and problems   总被引:9,自引:0,他引:9  
The alarming increase in drug-resistant bacteria makes a search for novel means of fighting bacterial infections imperative. An attractive approach is the use of agents that interfere with the ability of the bacteria to adhere to tissues of the host, since such adhesion is one of the initial stages of the infectious process. The validity of this approach has been unequivocally demonstrated in experiments performed in a wide variety of animals, from mice to monkeys, and recently also in humans. Here we review various approaches to anti-adhesion therapy, including the use of receptor and adhesin analogs, dietary constituents, sublethal concentrations of antibiotics and adhesin-based vaccines. Because anti-adhesive agents are not bactericidal, the propagation and spread of resistant strains is much less likely to occur than as a result of exposure to bactericidal agents, such as antibiotics. Anti-adhesive drugs, once developed, may, therefore, serve as a new means to fight infectious diseases.  相似文献   

9.
Monkey kidney cells, upon progressive subculture, became refractory to complement (C)-dependent immune cytolysis by anti-cell serum. Arbovirus infection restored these cells to a state of lytic susceptibility. Similar results were also abtained with antibody-dependent cellular cytotoxicity (ADCC), which is C independent. Antibodies raised against different subcultures varied considerably in lytic efficiency, indicating changing patterns of host cell expression during continous subculture. Taken together with the fact that arbovirus infection festored the lytic efficiency of all antibody preparations to the same degree suggested some form of host cell antigen re-expression as a mechanism. The results obtained in several exploratory experiments indicated that the antigenic re-expression responsible for the restoration of lysis was probably a local or selective rather than a generalized phenomenon. Thus, the amount of host cell surface antigen, measured by the use of mouse anti-cell serum and 125I anti-mouse globulin, was identical in both uninfected lytic susceptible and refractory cells, and decreased in both functional states following infection. Further, the binding of 125I concanavalin A, used to quantify surface glycoproteins, was similar in both lytic refractory and susceptible cells, and in both cases declined folowing virus infection. This result was incompatible with gross "masking" of cell surface antigens by exuberant production of surface coat material in lytic resistant cells. Finally, brief trypsinization of lytic resistant cells yielded an 8-fold increase in immune lysis, a result further consistent with local rather than generalized surface changes. The data were discussed interms of modulation of cell surface antigens affected both by repeated subculture and arboviral infection, and as a possible in vitro correlate of altered self-reactivity.  相似文献   

10.
Data obtained during the first 120 h after several resistant and susceptible varieties of wheat and some non-host species were inoculated with uredio-spores of Puccinia graminis tritici provided further evidence in support of the suggestion that hypersensitive necrosis is a consequence, and not the cause, of resistance. No evidence was obtained that individual genes for stem-rust resistance specifically influenced colony growth or the histological changes that occurred during infection. However, combinations of major resistance genes or the presence of minor genes for resistance apparently did affect colony growth and hypersensitive cell collapse. Three groups of varieties – resistant, intermediate and susceptible – were distinguished on the basis of colony growth and the amount and proportion of necrotic tissue associated with colony development. The boundary between the intermediate and susceptible groups was not as distinct as that between the intermediate and resistant groups.  相似文献   

11.
12.
Phosphite is used to protect plants from the soil borne pathogen, Phytophthora cinnamomi. Although phosphite stimulates resistance to P. cinnamomi, this is the first histological study of its effect on Eucalyptus marginata, an economically important forest tree in Western Australia. Clonal lines of E. marginata, considered resistant and susceptible to P. cinnamomi, were underbark inoculated with P. cinnamomi. 4 days later, they were treated with 0, 2.5, 5 or 10 g L−1 phosphite. Transverse hand sections were stained for suberin and lignin, and histological responses to infection were examined. Defence responses were stimulated at all phosphite concentrations in both clonal lines, and the genotypic difference in lesion length was eliminated within 8 days of treatment. In the resistant line, suberin production was stimulated while in the susceptible line both lignin and suberin were stimulated. By 2 days after treatment, phosphite stimulated a faster rate of suberin production in the resistant line than the susceptible line, but by 4 days after treatment, there was no difference in the increase between the lines. Damage caused by P. cinnamomi was found to extend furthest in the cortex and outer phloem in transverse sections in both genotypes. In the presence of P. cinnamomi, phosphite stimulated mitosis as part of the defence response, with meristematic activity involved in the compartmentalisation of damaged tissue (formation of periderm) and closure of healthy tissue (callus). Phytotoxicity had a detrimental effect in healthy tissues and this was more apparent in the resistant line, where it did not provide the best protection from lesion extension and plant mortality, suggesting phytotoxicity could disrupt defence responses. Phosphite increases the capacity of susceptible and resistant E. marginata clonal lines to wall-off and contain P. cinnamomi colonisation through lignin and suberin deposition, and increased meristematic activity.  相似文献   

13.
Ultrastructural changes in tomato leaves of susceptible cv. Peto 95 and resistant cv. Ontario 7710 infected with Pseudomonas syringae pv. tomato were followed by transmission electron microscopy. Up to 48 hours from the inoculation host cells of both cultivars looked quite normal and no bacteria were visible in the intercellular spaces; bacterial cells were found only in the substomatal chambers. Afterwards, the leaf cells of cv. Peto 95 began to degenerate and bacteria invaded the intercellular spaces which seemed enlarged. After 15 days the disorganization was complete: tomato cells were plasmolyzed and the intercellular spaces were filled with bacteria. In the leaves of resistant cv. Ontario 7710 no bacteria were observed later than 48 hours and no visible modifications occurred up to 15 days after the inoculation.  相似文献   

14.
Induction of defense response against Karnal bunt (KB) by suppressing the pathogenesis was observed upon exogenous application of jasmonic acid (JA) as evident from decrease in the coefficient of infection and overall response value in both susceptible and resistant varieties of wheat. The ultra-structural changes during disease progression showed the signs of programmed cell death (PCD). However, JA strengthened the defense barrier by enhancing the lignifications of cell walls as observed in spikes of both varieties by histochemical analysis. Compared to the plants inoculated with pathogen alone, plants of resistant line (RJP) first treated with JA followed by inoculation with pathogen showed more lignifications and extracellular deposition of other metabolites on cells, which is supposed to prevent mycelial invasions. Contrary to this, susceptible (SJP) lines also showed lignifications but the invasion was more compared to resistant line. Induction of protease activity was higher in resistant variety than its corresponding susceptible variety. The protease activity induced during the colonization of the pathogen and its proliferation inside the host system gets inhibited by JA treatment as demonstrated by the quantitative and in-gel protease assay. The results indicate the role of JA signalling in inhibiting the proteases due to expression of certain protease inhibitor genes. SDS-PAGE analysis shows differential gene expression through induction and/or suppression of different proteins in wheat spikes of resistant and susceptible varieties under the influence of JA. Thus, exogenously applied JA provides the conditioning effect prior to the challenge of infection and induces defense against KB probably by maintaining a critical balance between proteases and protease inhibitors and/or coordinating induction of different families of new proteins.  相似文献   

15.
Sweetpotato whitefly, Bemisia tabaci (Gennadius), and whitefly-transmitted tomato yellow leaf curl virus (TYLCV) are major threats to tomato production in the southeastern United States. TYLCV was introduced to Florida from the Caribbean islands and has spread to other southern states of the United States. In Georgia, in recent years, the incidence of TYLCV has been steadily increasing. Studies were conducted to monitor population dynamics of whiteflies in the vegetable production belt of Georgia, to evaluate TYLCV-resistant genotypes against whiteflies and TYLCV, and to assess the potential role of resistant genotypes in TYLCV epidemiology. Monitoring studies indicated that the peak incidence of whiteflies varied seasonally from year to year. In general, whitefly populations were not uniformly distributed. Tomato genotypes exhibited minor differences in their ability to support whitefly populations. TYLCV symptoms were visually undetectable in all but one resistant genotype. The infection rates (visually) in susceptible genotypes ranged from 40 to 87%. Greenhouse inoculations with viruliferous whiteflies followed by polymerase chain reaction (PCR) indicated that up to 100% of plants of resistant genotypes were infected, although predominantly symptomless. TYLCV acquisition by whiteflies from TYLCV-infected genotypes was tested by PCR; TYLCV acquisition rates from resistant genotypes were less than from susceptible genotypes. Nevertheless, this difference did not influence TYLCV transmission rates from resistant to susceptible genotypes. Results emphasize that resistant genotypes can serve as TYLCV and whitefly reservoirs and potentially influence TYLCV epidemics.  相似文献   

16.
Pathogenic bacteria use a variety of cell surface adhesins to promote binding to host tissues and protein-coated biomaterials, as well as cell–cell aggregation. These cellular interactions represent the first essential step that leads to host colonization and infection. Atomic force microscopy (AFM) has greatly contributed to increase our understanding of the specific interactions at play during microbial adhesion, down to the single-molecule level. A key asset of AFM is that adhesive interactions are studied under mechanical force, which is highly relevant as surface-attached pathogens are often exposed to physical stresses in the human body. These studies have identified sophisticated binding mechanisms in adhesins, which represent promising new targets for antiadhesion therapy.  相似文献   

17.
Arachidonic acid (AA) induces hypersensitive response (HR) on coleoptile/root regions of two-day-old pearl millet seedlings. The response is comparable to the HR induced by the downy mildew pathogen, Sclerospora graminicola. A time gap in the appearance of cell necrosis among genotypes of pearl millet was related to the degree of resistance to downy mildew. Based on the time required for the development of necrotic spots induced by AA, the pearl millet genotypes were categorised as highly resistant/resistant (HR in 3–6 h), susceptible (HR in 7–12 h) and highly susceptible (HR in 13 h and above). The percentage disease incidence in each genotype was compared with the time required for the development of AA-induced HR. The appearance of hypersensitive cell necrosis was rapid in genotypes having high resistance to downy mildew and was slow in genotypes with high susceptibility. This simple method of screening various pearl millet genotypes in the absence of the pathogen aids in identifying the downy mildew resistant/susceptible host cultivars without the risk of introducing the virulent race of the pathogen.  相似文献   

18.
19.
Many plant pathogenic bacteria utilize a conserved type III secretion system (TTSS) to deliver effector proteins into the host tissue. Indirect evidence has suggested that at least some effector proteins are translocated from the bacterial cytoplasm into the plant cell. Using an immunocytochemical approach, we demonstrate that the type III effector AvrBs3 from Xanthomonas campestris pv. vesicatoria localizes to nuclei of infected pepper leaves. Importantly, AvrBs3 translocation was observed in situ in native tissues of susceptible and resistant plants. AvrBs3 was detected in the nucleus as soon as 4 h post infection, which was dependent on a functional TTSS and the putative translocator HrpF. N-terminal AvrBs3 deletion derivatives are no longer secreted by the TTSS in vitro and could not be detected inside the host cells, suggesting that the N-terminus of AvrBs3 is important for secretion. Deletion of the nuclear localization signals in the AvrBs3 C-terminus, which are required for the AvrBs3-mediated induction of the hypersensitive reaction in resistant pepper plants, abolished AvrBs3 localization to the nucleus. This is the first report on direct evidence for translocation of a native type III effector protein from a plant pathogenic bacterium into the host cell.  相似文献   

20.
Ultrastructural changes during the process of interactions between three different diseaseresistant, susceptible, moderately resistant and resistant cucumber (Cucumis sativus L. ) cuhivars and Phytophthora melonis Katsura were respectively compared and the associated factors in the observed differences in colonization were determined. During the process of interaction in the susceptible cultivar, both inter- and intracellular growth of hyphae associated with extensive colonization of healthy hyphae and marked alteration of mesophyll cells, such as aggregation of cytoplasm and disintegration of cellular organelle were demonstrated. The general disorganization of host cell was observed in areas directly adjacent to the fungal hyphae and in cells several layers from the nearest visible hyphae. In the moderately resistant cultivar during interaction the host showed limited hypha growth with responses of resistance including 1 ) breakage of plasmodesmata to prevent the host cells to contact the hyphae, 2) increasing the quantity of endoplasmic reticulum and Golgi apparatus so as to increase the quantity of secretory protein, 3) a plasmalemma invagination containing granular material at the site in contact with the intercellular hyphae. The interaction in the resistant cuhivar was characterized as a hypersensitive reaction (HR) which means a rapid necrosis of the infected cells and the cells surrounding the invaded hyphae, resulting in death of the invaded hyphae. Formation of cell wall appositions right at the penetration sites of hyphae and haustorium-like structure was observed. The results indicate that the mechanism of host response to P. melonis invasion was differ- ent between the moderately resistant and the resistant cucumber cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号