首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The events leading to decline of intracellular free magnesium concentration following traumatic brain injury are unknown. One possible mechanism that may lead to such declines is an alteration in the number and nature of magnesium binding sites within cell membranes following a traumatic event. Although both alterations in membrane structure and decrease in free magnesium concentration have been independently demonstrated to occur following brain trauma, no correlations between the two events have been shown. In the present study, rat brain phospholipids were extracted and reconstituted in MgATP containing aqueous solutions. Using 31P magnetic resonance spectroscopy to measure free magnesium concentration, enzymatic hydrolysis of the artificial membrane vesicles by phospholipase C was shown to reduce the free magnesium concentration. Since activation of phospholipase C has been demonstrated to occur following traumatic brain injury, we propose that this event may initiate decline in free magnesium levels in vivo.  相似文献   

2.
钙荧光探剂的研究及其在生命科学中的应用   总被引:8,自引:0,他引:8  
钙荧光探剂测量活细胞胞浆游离Ca2+浓度的方法在钙研究中已成为一种越来越重要的技术。特别是由于新的一代荧光探剂的合成和激光共聚焦显微镜的发展,使其应用更加广泛。由于国内使用这种技术的实验室逐渐增多,本文将系统介绍钙荧光探剂的发展、测量原理和方法、新的常用钙荧光探剂的比较及其在生命科学中的应用。  相似文献   

3.
Abstract: Several studies have reported declines in brain total and free magnesium concentration after a traumatic insult to the CNS. Although the evidence suggests that this magnesium decline is associated with eventual neurologic outcome after trauma, the duration of free magnesium decline and its impact on related bioenergetic variables are relatively unknown. The present study has therefore used phosphorus magnetic resonance spectroscopy to determine the length of time that free magnesium remains suppressed after traumatic brain injury in rats. Immediately after the traumatic event, brain intracellular free magnesium declined to <60% of preinjury values and remained significantly depressed (50 ± 8%; p < 0.001) for 5 days before recovering to preinjury levels by day 8. Cytosolic phosphorylation ratio and mitochondrial oxidative capacity also significantly decreased ( p = 0.008) and increased ( p = 0.002), respectively, after trauma. However, unlike the time of maximum magnesium change, the maximum changes in these bioenergetic variables occurred at 16–24 h after trauma and thereafter remained stable until after the magnesium had recovered. We conclude that free magnesium decline after trauma precedes changes in bioenergetic variables. Furthermore, therapies targeted at reestablishing magnesium homeostasis after trauma may require administration over a 1-week period.  相似文献   

4.
SLC41A1 is a novel mammalian Mg2+ carrier   总被引:1,自引:0,他引:1  
The molecular biology of mammalian magnesium transporters and their interrelations in cellular magnesium homeostasis are largely unknown. Recently, the mouse SLC41A1 protein was suggested to be a candidate magnesium transporter with channel-like properties when overexpressed in Xenopus laevis oocytes. Here, we demonstrate that human SLC41A1 overexpressed in HEK293 cells forms protein complexes and locates to the plasma membrane without, however, giving rise to any detectable magnesium currents during whole cell patch clamp experiments. Nevertheless, in a strain of Salmonella enterica exhibiting disruption of all three distinct magnesium transport systems (CorA, MgtA, and MgtB), overexpression of human SLC41A1 functionally substitutes these transporters and restores the growth of the mutant bacteria at magnesium concentrations otherwise non-permissive for growth. Thus, we have identified human SLC41A1 as being a bona fide magnesium transporter. Most importantly, overexpressed SLC41A1 provide HEK293 cells with an increased magnesium efflux capacity. With outwardly directed Mg(2+) gradients, a SLC41A1-dependent reduction of the free intracellular magnesium concentration accompanied by a significant net decrease of the total cellular magnesium concentration could be observed in such cells. SLC41A1 activity is temperature-sensitive but not sensitive to the only known magnesium channel blocker, cobalt(III) hexaammine. Taken together, these data functionally identify SLC41A1 as a mammalian carrier mediating magnesium efflux.  相似文献   

5.
The content of total, bound and osmotically free magnesium was estimated in various fungi and in the yeastSaccharomyces cerevisiae. Total magnesium increases at lower growth rates ofEndomyces magnussi andPenicillium chrysogenum 140A as well as during the logarithmic stage of growth ofPenicillium chrysogenum Q-176. The binding of magnesium requires orthophosphate, decreasing during lack of external phosphate when the intracellular concentration of free magnesium rises. The fungi were found to contain a novel form of bound magnesium, a polymeric magnesium orthophosphate (POMg), which appears to take part in the control of free magnesium level inPenicillium chrysogenum Q-176. The level of free magnesium is proportional to the growth rate ofEndomyces magnusii andPenicillium chrysogenum Q-176 and 140A. Total, as well as free, magnesium changes less than three-fold as external Mg concentration is changed 13,000-fold. The magnesium up against concentration gradients of 1∶25 to 1∶1300, the metal being distributed non-uniformation the cells ofSaccharomyces cerevisiae.  相似文献   

6.
An abnormal handling of renal magnesium has been suggested to cause salt-sensitive hypertension. The filtered magnesium is first reabsorbed in the proximal tubule. Amiloride has been shown to enhance renal magnesium conservation, but the regulatory mechanisms are unknown yet. High-salt (8% NaCl) diet decreased serum magnesium concentration, while increased urinary magnesium in Dahl salt-sensitive (DS) rat. Furthermore, the expression of nitric oxide synthase type 3 and nitric oxide (NO) content were decreased in high-salt loaded DS rat. In isolated proximal tubule cells, amiloride (0.1 mM) increased intracellular free magnesium concentration ([Mg(2+)](i)). However, the net [Mg(2+)](i) increase in the high-salt loaded DS rat was smaller than other groups. NOR1 (0.1 mM), a NO donor, restored the increase of [Mg(2+)](i) to the same level of other groups. On the contrary, L-NMMA (0.1 mM), an inhibitor of NO production, inhibited the increase of [Mg(2+)](i) in all groups. These results suggest that intracellular NO has an important role to up-regulate amiloride-elicited magnesium influx.  相似文献   

7.
Bacterial ingestion and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. However, only few proteins implicated in intracellular bacterial killing have been identified to date. We used Dictyostelium discoideum, a phagocytic bacterial predator, to study intracellular killing. In a random genetic screen we identified Kil2, a type V P-ATPase as an essential element for efficient intracellular killing of Klebsiella pneumoniae bacteria. Interestingly, kil2 knockout cells still killed efficiently several other species of bacteria, and did not show enhanced susceptibility to Mycobacterium marinum intracellular replication. Kil2 is present in the phagosomal membrane, and its structure suggests that it pumps cations into the phagosomal lumen. The killing defect of kil2 knockout cells was rescued by the addition of magnesium ions, suggesting that Kil2 may function as a magnesium pump. In agreement with this, kil2 mutant cells exhibited a specific defect for growth at high concentrations of magnesium. Phagosomal protease activity was lower in kil2 mutant cells than in wild-type cells, a phenotype reversed by the addition of magnesium to the medium. Kil2 may act as a magnesium pump maintaining magnesium concentration in phagosomes, thus ensuring optimal activity of phagosomal proteases and efficient killing of bacteria.  相似文献   

8.
31P-nuclear magnetic resonance spectra of superfused cerebral tissues were obtained under normal, hypoglycaemic, and hypoxic conditions. Concentrations of free intracellular magnesium were calculated from differences in chemical shifts between the alpha- and beta-resonances of the nucleoside phosphates. Control levels of 0.33 mM were significantly increased to 0.52 mM in hypoglycaemia and to 0.57 mM in severe hypoxia. Removal of calcium from the superfusing medium increased the free intracellular Mg2+ concentration to 0.63 mM.  相似文献   

9.
During the maturation process reticulocytes lose their intracellular organelles and undergo changes in membrane lipid composition and ion transport properties. While several reports indicate differences in the levels of magnesium, sodium and calcium in reticulocytes and erythrocytes, controversy remains concerning the actual magnitude and direction of ionic alterations during reticulocyte maturation. One problem with all of these studies is that the techniques used are invasive and are limited to measuring only the total cell ion content. We have used 31P, 23Na and 19F nuclear magnetic resonance (NMR) spectroscopy to compare the intracellular free ion and phosphometabolite levels in guinea pig reticulocytes and mature red blood cells. In contrast to a sharply decreased concentration of ATP in erythrocytes in comparison to reticulocytes, the intracellular free magnesium, measured using 31P-NMR, was increased by about 65% upon maturation (150 mumol/l cell water in reticulocytes in comparison to 250 mumol/l cell water in erythrocytes). Sizeable but opposite changes in intracellular sodium (5.5 mumol/ml cells in reticulocytes vs. 8.5 mumol/ml cells in erythrocytes) and intracellular free calcium (99 nM vs. 31 nM in reticulocytes and mature red cells, respectively) were also observed, suggesting that alterations in the kinetics of membrane ion transport systems, accompanying changes in phospholipid and cholesterol content, occur during the process of red cell maturation. However, in contrast to dog red blood cells, there was no evidence for the presence of a Na+/Ca2+ exchanger in guinea pig reticulocytes or erythrocytes.  相似文献   

10.
Mitochondrial damage is the main source of cellular injury upon ischemia-reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH. We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry. It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

11.
Mitochondrial damage is the main source of cellular injury upon ischemia–reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH.We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry.It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

12.
The use of high-affinity fluorescent probes for monitoring intracellular free Ca2+ in cardiac muscle is now widespread. We have investigated the consequences of introducing intracellular buffers with the properties of Fura-2 or Indo-1 on the action potential, Ca2+ transient and contractile activity of the myocardium. Our theoretical results suggest that, at the high intracellular concentrations of these fluorescent probes used on occasion to improve the signal-to-noise ratio of the emitted fluorescence, modulation of action potential profile and attenuation of the amplitudes of the Ca2+ transient and contraction can occur, together with subtle changes in the kinetics of these events.  相似文献   

13.
Delva P  Degan M  Pastori C  Faccini G  Lechi A 《Life sciences》2002,71(18):2119-2135
The intracellular ionic content of human erythrocytes may be altered by hyperglycaemia. Despite this, very little is known about the cellular mechanisms linking glucose and cellular magnesium homeostasis. We measured intracellular ionized magnesium in human lymphocytes, by means of a fluorimetric technique, total intracellular magnesium by means of atomic absorption spectrophotometry and intracellular ATP by means of HPLC. The incubation of lymphocytes with D-glucose in the absence of insulin was followed by a significant decrease in intracellular ionized magnesium; this effect did not occur when the cells were incubated with L-glucose. The effect of glucose on intracellular ionized magnesium was blocked by amphotericin B and the EC(50) of the effect of glucose on intracellular ionized magnesium was about 5 mmol/l of glucose. The increase of intracellular ionized magnesium in cells incubated in the absence of glucose was followed by a decrease in intracellular ATP. In a Na(+)-free medium the decrease of intracellular ionized magnesium in the presence of glucose was still present and the incubation of lymphocytes with glucose did not modify total intralymphocyte magnesium. By selective permeabilization of cell membranes, we established that glucose could not increase compartmentalized intracellular ionized magnesium. Our data supports the hypothesis that glucose per se induces a substantial decrease in intracellular ionized magnesium, which is probably due to an augmented binding of intracellular ionized magnesium to cellular ATP.  相似文献   

14.
In terms of accuracy and sensitivity, intracellularly trapped, pH-dependent fluorescent probes are appropriate to accurately measure intracellular pH. These probes are commonly introduced into living cells in esterified form, wherein the free acid is produced through enzymatic hydrolysis. The fluorescence characteristics of the ester and the free acid can differ markedly and spectral uncertainty can occur. We describe here the measurement of intracellular pH using 8-hydroxypyrene-1,3,6-trisulfonic acid (pyranine) that has been scrape-loaded into BALB/c-3T3 mouse cells. The excitation spectrum of pyranine is pH sensitive, with an isosbestic point at 415 nm and peaks at 405 and 465 nm which decrease and increase with pH, respectively. The 465/405 ratio can be used to monitor the pH, while the fluorescence at 415 nm indicates the total dye-dependent signal remaining. The scrape-loaded dye persists in cells for periods up to 6 h. We have calibrated this dye in situ using nigericin/high K+, and have found that the pKa of the dye in situ is 7.82, as compared to 7.68 in vitro. We have observed that the cells can slowly equilibrate their intracellular pH to near control levels when presented with either an acute alkaline or acid load.  相似文献   

15.
The association constants for the formation of the binary complexes of rabbit fast skeletal muscle troponin subunits have been determined for three solution conditions: (a) 1 mM CaCl2, (b) 3 mM MgCl2 and 1 mM EGTA, and (c) 2 mM EDTA. The subunits were labeled with extrinsic fluorescence probes, either 5-(iodoacetamido)eosin (IAE) or dansylaziridine (DANZ), and the binding was detected by enhancement or quenching of the probe fluorescence. The association constant for the TnI X TnT (where TnI and TnT are the inhibitory subunit and the tropomyosin-binding subunit, respectively, of troponin) complex was measured with two different probes, IAE-TnI and IAE-TnT. The measured values were not affected by the presence of Ca2+ or Mg2+, and the mean values for the three buffer conditions are, respectively, 8.0 X 10(6) and 9.0 X 10(6) M-1 for the two probes. The association constant for TnC-TnI (where TnC is the Ca2+-binding subunit of troponin) interaction was measured with three probes, IAE-TnC, DANZ-TnC, and IAE-TnI. Values of 1.7 X 10(9), 1.2 X 10(8), and 1.0 X 10(6) M-1 were obtained, respectively, in the presence of calcium ion, in the presence of magnesium ion (no calcium), and in the absence of divalent metal ions. A mean value of 4.0 X 10(7) M-1 was obtained for the association constant of TnC X TnT using DANZ-TnC and IAE-TnC as probes in the presence of calcium or magnesium ions. A value of 4.5 X 10(6) M-1 was obtained in the absence of divalent metal ions. The results show that the presence of magnesium ion in the Ca2+-Mg2+ sites strengthens the TnC-TnI and the TnC-TnT interactions and suggest that the troponin structure would be stabilized. This likely results from the effect of magnesium ion on the Ca2+-Mg2+ domains of TnC. The presence of calcium ion in the Ca2+-specific sites provides an additional binding free energy for the TnC-TnI interaction which presumably reflects the changes in the subunit interactions required for the calcium regulatory switch.  相似文献   

16.
19F nuclear magnetic resonance is used in conjunction with 5,5'-difluoro-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBapta), a fluorinated calcium chelator, to report steady-state intracellular free calcium levels ([Ca2+]i) in populations of resting, quiescent, isolated adult heart cells. 31P nuclear magnetic resonance shows that 5FBapta-loaded cells maintain normal intracellular high-energy phosphates, pH, and free Mg2+. The intracellular free calcium concentration of well perfused, isolated heart cells is 61 +/- 5 nM, measured with 5FBapta, which has a dissociation constant (Kd) for calcium chelation of 500 nM. A similar value is obtained with Quin-MF, another fluorinated calcium chelator with Kd and maximum calcium sensitivity at 80 nM. We find that the steady-state level of intracellular free calcium is increased by decreased extra-cellular sodium concentration, omission of extracellular magnesium, decreased extracellular pH, hyperglycemia, and upon treatment with lead acetate. Further, extracellular ATP caused a large transient increase in [Ca2+]i. Thus, while heart cells maintain a very low level of intracellular free Ca2+, acute alterations in extracellular environment can cause derangement of calcium homeostasis, resulting in measurable increases in [Ca2+]i.  相似文献   

17.
Much of the tissue damage resulting from trauma to the central nervous system appears to result from secondary, delayed biochemical changes that follow primary mechanical injury. However, the early biochemical events remain to be elucidated. In the present studies, we have used phosphorus (31P) magnetic resonance spectroscopy (MRS) to examine in vivo, the temporal changes in brain intracellular free Mg2+ concentration following fluid percussion head injury in rats. We report that injury caused a profound and rapid decrease in intracellular free Mg2+ which was significantly correlated with the severity of injury. At high levels of injury, the decrease in intracellular free Mg2+ concentration was associated with a decrease in total Mg2+ concentration as determined by atomic absorption spectrophotometry. Prophylactic treatment with MgSO4 prevented the post-traumatic decrease in intracellular free Mg2+ and resulted in a significant improvement in acute neurological outcome. Because magnesium is essential for a number of critical enzyme reactions, including those of glycolysis, oxidative and substrate level phosphorylation, protein synthesis, and phospholipid synthesis, changes in free Mg2+ after brain trauma may represent a critical early factor leading to irreversible tissue damage.  相似文献   

18.
Intracellular free Ca2+plays an important role in the function of neutrophils and many other cell types. In this report, fluorescent techniques for the measurement of intracellular Ca2+in neutrophils are reviewed. Thus, some commonly used fluorescent indicators are listed, and both theoretical and practical considerations required for their use are detailed. The use of these probes to study intracellular Ca2+in neutrophil populations or in individual cells by imaging techniques, including measurement using confocal microscopy, is described.  相似文献   

19.
The concentrations of free magnesium, [Mg(2+)](free), [H(+)], and [ATP] are important in the dehydration of red blood cells from patients with sickle cell anemia, but they are not easily measured. Consequently, we have developed a rapid, noninvasive NMR spectroscopic method using the phosphorus chemical shifts of ATP and 2,3-diphosphoglycerate (DPG) to determine [Mg(2+)](free) and pH(i) simultaneously in fully oxygenated whole blood. The method employs theoretical equations expressing the observed chemical shift as a function of pH, K(+), and [Mg(2+)](free), over a pH range of 5.75-8.5 and [Mg(2+)](free) range 0-5 mm. The equations were adjusted to allow for the binding of hemoglobin to ATP and DPG, which required knowledge of the intracellular concentrations of ATP, DPG, K(+), and hemoglobin. Normal oxygenated whole blood (n = 33) had a pH(i) of 7.20 +/- 0.02, a [Mg(2+)](free) of 0.41 +/- 0.03 mm, and [DPG] of 7.69 +/- 0.47 mm. Under the same conditions, whole sickle blood (n = 9) had normal [ATP] but significantly lower pH(i) (7.10 +/- 0.03) and [Mg(2+)](free) (0.32 +/- 0.05 mm) than normal red cells, whereas [DPG] (10.8 +/- 1.2 mm) was significantly higher. Because total magnesium was normal in sickle cells, the lower [Mg(2+)](free) could be attributed to increased [DPG] and therefore greater magnesium binding capacity of sickle cells.  相似文献   

20.
Magnesium: nutrition and metabolism   总被引:14,自引:0,他引:14  
Magnesium is an essential mineral that is needed for a broad variety of physiological functions. The usual daily magnesium uptake with a western diet is sufficient to avoid deficiency but seems not to be high enough to establish high normal serum magnesium concentrations that are protective against various diseases. Changes in magnesium homeostasis mainly concern the extracellular space, as the intracellular magnesium concentration is well regulated and conserved. The extracellular magnesium concentration is primarily regulated by the kidney, the mechanisms of this regulation have been elucidated recently. Due to the growing knowledge about the regulation of extra- and intracellular magnesium concentrations and the effects of changed extracellular magnesium levels the use of magnesium in therapy gains more widespread attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号