首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(C57Bl/Cne X C3H/Cne)F1 male mice were irradiated with single acute doses of 0.4 MeV neutrons ranging from 0.05 to 2 Gy, and testis cell suspensions were prepared for cytometric analysis of the DNA content 2-70 days after irradiation. Various cell subpopulations could be identified in the control histogram including mature and immature spermatids, diploid spermatogonia and spermatocytes, tetraploid cells and cells in the S-phase. Variations in the relative proportions of different cell types were detected at each dose and time, reflecting lethal damage induced on specific spermatogenetic stages. The reduction of the number of elongated spermatids 28 days after irradiation was shown to be a particularly sensitive parameter for the cytometrical assessment of the radiosensitivity of differentiating gonia. A D0 value of 0.13 Gy was calculated and compared with data obtained after X-irradiation, using the same experimental protocol. In the latter case a biphasic curve was obtained over the dose range from 0.25 to 10 Gy, possibly reflecting the existence of some cell population heterogeneity. RBE values were estimated at different neutron doses relative to the radiosensitive component of the X-ray curve, and ranged from 3.3 to 4, in agreement with data in the literature. Genotoxic effects were monitored 7 days after irradiation by a dose-dependent increase of the coefficient of variation (CV) values of the round spermatid peak, reflecting the induction of numerical and structural chromosome aberrations, and 14 or 21 days after irradiation by the detection of diploid elongated spermatids, probably arising from a radiation-induced complete failure of the first or second meiotic division.  相似文献   

2.
Biological effects of ion beams in Nicotiana tabacum L.   总被引:2,自引:0,他引:2  
The biological effects of ion beams on Nicotiana tabacum L., particularly the induction of chromosome aberrations, were investigated. Dry seeds were exposed to 12C5+, 4He2+ and 1H+ beams with linear energy transfer (LET) ranging from 1 to 111 keV/μm and irradiated with gamma-rays. Ion beams were more effective in reducing germination and survival of the seeds than gamma-rays. The LD50 for 12C5+ beams, 4He2+ beams and gamma-rays were 35, 60 and 500 Gy, respectively. The frequencies of mitotic cells with chromosome aberrations, such as chromosome bridges, acentric fragments and lagging chromosomes in the root tip cells of the exposed seeds, increased linearly with increasing doses. Relative biological effectiveness (RBE) values, based on the doses that induced a survival inhibition of 50% and a 10% frequency of aberrant cells, were 14.3–17.5 for the 12C5+ beams, 7.0–8.3 for the 4He2+ beams and 7.8 for the 1H+ beams. Furthermore, the relative ratios of the chromosome aberration types were significantly different between the ion beam and the gamma-ray regimes: chromosome fragments were more frequent in the former, and chromosome bridges in the latter. Based on these results, we concluded that the repair process of initial lesions induced by ion beams may be different from that induced by low- LET radiation. Received: 29 October 1998 / Accepted in revised form: 25 March 1999  相似文献   

3.
Human lymphocytes were irradiated in vitro during Go stage by graded doses of thermal neutrons and neutrons having an average energy of 0.04; 0.09; 0.35; 0.85 and 14,7 MeV as well as by 60Co gamma rays, and RBE of neutrons relative to gamma-rays was calculated for the frequency of total and different types of aberrations. It was found that the RBE has the most value at the low doses and decreases when the exposition dose increases. 0.35 MeV neutrons have the maximum RBE in comparison with neutrons having other energies. When comparing the RBE values calculated for different types of chromosome aberrations, it was found out that dicentrics and dicentrics plus centric rings had more RBE than acentric aberrations (pair fragments and minutes).  相似文献   

4.
The effects of tritium (HTO) beta-rays on human sperm chromosomes were studied using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. Semen samples were treated with media containing 1.53-24.3 mCi/ml HTO for about 80 min. 1290 spermatozoa from the controls and 1842 spermatozoa from the irradiated groups were karyotyped. The incidence of spermatozoa with structural chromosome aberrations increased linearly with increasing dosage. Breakage-type aberrations occurred far more frequently than exchange-type. Chromosome-type aberrations appeared far more frequently than chromatid-type. All of these types of aberrations showed linear dose-dependent increases. The RBE values of HTO beta-rays relative to X-rays were calculated for the above-mentioned 5 indices, respectively. Their RBE values ranged from 1.89 to 3.00 when the absorbed dose was estimated to be the minimum, whereas the values ranged between 1.04 and 1.65 when the absorbed dose was estimated to be the maximum.  相似文献   

5.
The induction of chromosome aberrations in human lymphocytes irradiated in vitro with X rays generated at a tube voltage of 29 kV was examined to assess the maximum low-dose RBE (RBE(M)) relative to higher-energy X rays or 60Co gamma rays. Since blood was taken from the same male donor whose blood had been used for previous irradiation experiments using widely varying photon energies, the greatest possible accuracy was available for such an estimation of the RBE(M), avoiding the interindividual variations in sensitivity or differences in methodology usually associated with interlaboratory comparisons. The magnitude of the linear coefficient alpha of the linear-quadratic dose-effect relationship obtained for the production of dicentric chromosomes by 29 kV X rays (alpha = 0.0655 +/- 0.0097 Gy(-1)) confirms earlier observations of a strong increase in alpha with decreasing photon energy. Relating this value to previously published values of alpha for the dose-effect curves for dicentrics obtained in our own laboratory, RBE(M) values of 1.6 +/- 0.3 in comparison with weakly filtered 220 kV X rays, 3.0 +/- 0.7 compared to heavily filtered 220 kV X rays, and 6.1 +/- 2.5 compared to 60Co gamma rays have been obtained. These data emphasize that the choice of the reference radiation is of fundamental importance for the RBE(M) obtained. A special survey of the RBE(M) values obtained by different investigators in the narrow quality range from about 30 to 350 kV X rays indicates that the present RBE is in fairly good agreement with previously published findings for the induction of chromosome aberrations or micronuclei in human lymphocytes but differs from recently published findings for neoplastic transformation in a human hybrid cell line.  相似文献   

6.
Cell survival, mutations and chromosomal effects were studied in primary human lymphocytes exposed in G0 phase to a proton beam with an incident energy of 0.88 MeV (incident LET of 28 keV/microm) in the dose range 0.125-2 Gy. The curves for survival and mutations at the hypoxanthine-guanine phosphoribosyl transferase locus were obtained by fitting the experimental data to linear and linear-quadratic equations, respectively. In the dose interval 0-1.5 Gy, the alpha parameters of the curves were 0.42/Gy and 3.6 x 10(-6) mutants/Gy, respectively. The mutation types at the HPRT locus were analyzed by multiplex-PCR in 94 irradiated and 41 nonirradiated clones derived from T lymphocytes from five healthy donors. All clones showed a normal multiplex-PCR pattern and were classified as point mutations. Chromosome aberration data were fitted as a linear function of dose (alpha = 0.62 aberrations per cell Gy(-1)). By irradiating G0 lymphocytes from a single subject with 28 keV/microm protons and gamma rays, an RBE of 6.07 was obtained for chromosome aberrations. An overinvolvement of chromosome 9 relative to chromosome 7 was found in chromosome breaks after chromosome painting analysis.  相似文献   

7.
Zhang H  Duan X  Yuan Z  Li W  Zhou G  Zhou Q  Bing L  Min F  Li X  Xie Y 《Mutation research》2006,595(1-2):37-41
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of (12)C6+ ion or (60)Co gamma-ray. Chromosomal aberrations were analyzed in metaphase II oocytes at 7 weeks after irradiation. The relative biological effectiveness (RBE) of (12)C6+ ion was calculated with respect to 60Co gamma-ray for the induction of chromosomal aberrations. The (12)C6+ ion and 60Co gamma-ray dose-response relationships for chromosomal aberrations were plotted by linear quadratic models. The data showed that there was a dose-related increase in frequency of chromosomal aberrations in all the treated groups compared to controls. The RBE values for (12)C6+ ions relative to 60Co gamma-rays were 2.49, 2.29, 1.57, 1.42 or 1.32 for the doses of 0.5, 1.0, 2.0, 4.0 or 6.0 Gy, respectively. Moreover, a different distribution of the various types of aberrations has been found for (12)C6+ ion and 60Co gamma-ray irradiations. The dose-response relationships for (12)C6+ ion and 60Co gamma-ray exhibited positive correlations. The results from the present study may be helpful for assessing genetic damage following exposure of immature oocytes to ionizing radiation.  相似文献   

8.
The aim of this work is to determine Relative Biological Effectiveness (RBE) of tritium beta-irradiation using chromosome aberration frequency in peripheral blood lymphocytes after radiation exposure in vitro and in vivo. The results of the experimental estimation of tritium beta-irradiation RBE in comparison with 60Co gamma-irradiation using analysis of unstable chromosome aberration frequencies in peripheral blood lymphocytes in reference to concrete conditions of the investigation were presented. It was demonstrated that tritium beta-irradiation is in total more effective than gamma-irradiation up to 1 Gy. RBE of tritium beta-irradiation was determined as 2.2 at minimum doses and decreased at higher doses (1 Gy) up to 1.25. For the first time results of the comparative analysis of frequencies of stable chromosome aberrations in two groups of professional nuclear workers (town Sarov) exposed to chronic tritium beta- and gamma-irradiation in remote period were presented. The grater RBE of tritium beta-irradiation was demonstrated. It has been estimated as 2.5.  相似文献   

9.
Following whole-body irradiation of ICR mice with various doses of fission neutrons or X-rays, the frequency of micronuclei (MNs) in peripheral blood reticulocytes was measured at 12 h intervals beginning immediately after irradiation and ending at 72 h after irradiation. The resulting time-course curve of MN frequency had a clear peak 36 h after irradiation, irrespective of the type of radiation applied and the dose used. The MN frequency, averaged as the unweighted mean over the experimental time course, showed a linear increase with increasing dose of either fission neutrons or X-rays. The linear response to X-rays supports reported conclusion that induction of MN formation in reticulocytes is a dose-rate independent phenomenon. The relative biological effectiveness (RBE) of fission neutrons to X-rays for MN induction was estimated to be 1.9 +/- 0.3. This value is considerably lower than the RBE value of 4.6 +/- 0.5 reported for the same fission neutrons for induction of lymphocyte apoptosis in the thymus of ICR mice that represents dose-rate independent, one-track event. Based on these results, we propose that MNs increased in reticulocytes after irradiation mostly represent acentric fragments caused by single chromosome breaks, and that some confounding factor is operating in erythroblasts for the formation of aberrations from non-rejoining DNA double-strand breaks more severely after high-LET radiation than after low-LET radiation.  相似文献   

10.
The induction of chromosome aberrations in mouse eggs by exposure to HTO beta-particles and 60Co gamma-rays at the early pronuclear stage was examined at the first-cleavage metaphase by using an in vitro fertilization technique. Eggs at the pronuclear stage were exposed to beta-particles in a chemically defined medium containing tritiated water (HTO) for 2 h at 3-5 h after insemination. Other eggs at the same stage were exposed to gamma-rays from 60Co during the same period. The dose-response relationships for frequencies of chromosome aberrations per egg were fitted to a linear-quadratic model for HTO beta-particles, and to a linear model for 60Co gamma-rays. The chromosome aberrations were mainly chromosome-type, and the majority of all aberrations were fragments. RBE values of HTO beta-particles relative to 60Co gamma-rays and acute X-rays, which were estimated from the ratio of the linear regression coefficients over 0.05-Gy range, were 2.0 and 1.6, respectively.  相似文献   

11.
Epidemiological data on the health effects of A-bomb radiation in Hiroshima and Nagasaki provide the framework for setting limits for radiation risk and radiological protection. However, uncertainty remains in the equivalent dose, because it is generally believed that direct derivation of the relative biological effectiveness (RBE) of neutrons from the epidemiological data on the survivors is difficult. To solve this problem, an alternative approach has been taken. The RBE of polyenergetic neutrons was determined for chromosome aberration formation in human lymphocytes irradiated in vitro, compared with published data for tumor induction in experimental animals, and validated using epidemiological data from A-bomb survivors. The RBE of fission neutrons was dependent on dose but was independent of the energy spectrum. The same RBE regimen was observed for lymphocyte chromosome aberrations and tumors in mice and rats. Used as a weighting factor for A-bomb survivors, this RBE system was superior in eliminating the city difference in chromosome aberration frequencies and cancer mortality. The revision of the equivalent dose of A-bomb radiation using DS02 weighted by this RBE system reduces the cancer risk by a factor of 0.7 compared with the current estimates using DS86, with neutrons weighted by a constant RBE of 10.  相似文献   

12.
RBE of X rays of different energies: a cytogenetic evaluation by FISH   总被引:1,自引:0,他引:1  
Mammography using 26-30 kVp X rays is routinely used in breast cancer screening. Discussion about the radiation-related risk associated with this methodology is ongoing. For radioprotection purposes, a quality factor of 1 has been assigned for all photon energies. However, the relative biological effectiveness (RBE) could increase as the photon energy decreases. Analyzing different biological parameters, for 30 kVp X rays, RBE values from 1 to 8 have been estimated. In the present study, a cytogenetic FISH evaluation of the RBE of 30, 80 and 120 kVp X rays has been done. Blood samples were irradiated with 10 doses from 0.05 to 3 Gy for each energy studied. The yields of translocations and dicentrics were determined by fluorescence in situ hybridization (FISH) using whole chromosome probes for chromosomes 1, 4 and 11 together with a pancentromeric probe. The alpha coefficients of the dose-effect curves for dicentrics, minimum number of breaks needed to produce exchange-type aberrations, and apparently simple translocations were used to estimate the RBE. Using the curves obtained for 120 kVp as a reference, the RBE values for dicentrics were 1.08+/-0.43 and 1.73+/-0.59 for 80 and 30 kVp X rays, respectively; for minimum number of breaks these values were 1.38+/-0.39 and 1.42+/-0.41, and for apparently simple translocations they were 1.26+/-0.40 and 1.51+/-0.47, respectively. Moreover, the induction of complex aberrations by these energies was compared. The percentage of complex aberrations relative to total aberrations showed a significant tendency to increase as X-ray energy decreased: 7.8+/-1.19, 9.8+/-1.6 and 14.1+/-1.9 for 120, 80 and 30 kVp, respectively (P<0.02).  相似文献   

13.
Oral administration of M. piperita (1 g/kg body weight/day) before exposure to gamma radiation was found to be effective in protecting against the chromosomal damage in bone marrow of Swiss albino mice. Animals exposed to 8 Gy gamma radiation showed chromosomal aberrations in the form of chromatid breaks, chromosome breaks, centric rings, dicentrics, exchanges and acentric fragments. There was a significant increase in the frequency of aberrant cells at 6 hr after irradiation. Maximum aberrant cells were observed at 12 hr post-irradiation autopsy time. Further, the frequency of aberrant cells showed decline at late post-irradiation autopsy time. However, in the animals pretreated with Mentha extract, there was a significant decrease in the frequency of aberrant cells as compared to the irradiated control. Also significant increase in percentage of chromatid breaks, chromosome breaks, centric rings, dicentrics, exchanges, acentric fragments, total aberrations and aberrations/damaged cell was observed at 12 hr post-irradiation autopsy time in control animals, whereas Mentha pretreated irradiated animals showed a significant decrease in percentage of such aberrations. A significant decrease in GSH content and increase in LPO level was observed in control animals, whereas Mentha pretreated irradiated animals exhibited a significant increase in GSH content and decrease in LPO level but the values remained below the normal. The radioprotective effect of Mentha was also demonstrated by determining the LD(50/30) values (DRF = 1.78). The results from the present study suggest that Mentha pretreatment provides protection against radiation induced chromosomal damage in bone marrow of Swiss albino mice.  相似文献   

14.
X rays of 26-30 kVp are routinely used for mammography screening. For radioprotection purposes, a quality factor (Q) of 1 is assumed for all photon energies, but it is thought that the relative biological effectiveness (RBE) increases as the photon energy decreases. The analysis of radiation-induced chromosome aberrations is one of the most widely used methods to study the interaction between radiation and DNA. Here we present a FISH study on metaphases from peripheral blood samples irradiated with three different X-ray energies (30, 80 and 120 kVp). The study comprises two FISH approaches: one using pantelomeric and pancentromeric probes to evaluate the induction of incomplete chromosome aberrations and the other using mFISH to evaluate the induction of complex chromosome aberrations. The results indicate that exposure to 30 kVp X rays resulted in a modest increase in the induction of incomplete elements and complex aberrations compared to 80 and 120 kVp X rays.  相似文献   

15.
The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.  相似文献   

16.
Among various environmental genotoxins, ionizing radiation has received special attention because of its mutagenic, carcinogenic and teratogenic potential. In this context and considering the scarcity of literature data, the objective of the present study was to evaluate the effect of 90Sr beta-radiation on human cells. Blood cells from five healthy donors were irradiated in vitro with doses of 0.2-5.0Gy from a 90Sr source (0.2Gy/min) and processed for chromosome aberration analysis and for comet assay. The cytogenetic results showed that the most frequently found aberration types were acentric fragments, double minutes and dicentrics. The alpha and beta coefficients of the linear-quadratic model, that best fitted the data obtained, showed that 90Sr beta-radiation was less efficient in inducing chromosome aberrations than other types of low linear energy transfer (LET) radiation such as 3H beta-particles, 60Co gamma-rays, 137Cs and 192Ir and X-rays. Apparently, 90Sr beta-radiation in the dose range investigated had no effect on the modal chromosome number of irradiated cells or on cell cycle kinetics. Concerning the comet assay, there was an increase in DNA migration as a function of radiation dose as evaluated by an image analysis system (tail moment) or by visual classification (DNA damage). The dose-response relation adequately fitted the non-linear regression model. In contrast to the cytogenetic data, 90Sr beta-radiation induced more DNA damage than 60Co gamma-radiation when the material was analyzed immediately after exposures. A possible influence of selective death of cells damaged by radiation was suggested.  相似文献   

17.
High level of chromosome aberrations has been determined in different types of somatic cells of monkeys which were subjected to general daily repeated low-capacity radiation (0.049-0.0078 Gy per a day) and accumulated summary doses of about 8.26-36.77 Gy. Long persistence of cytogenetic irradiation aftereffect (15-19 years of observation) has been shown. Differences are revealed in the frequency and types of chromosome aberrations in tissues with different level of cell proliferation: in bone marrow, peripheral blood lymphocytes and epithelial renal cells of irradiated monkeys.  相似文献   

18.
Snigireva  G. P.  Khaimovich  T. I.  Nagiba  V. I. 《Biophysics》2011,56(2):364-370
The goal of this work was to determine the relative biological effectiveness (RBE) of tritium β-radiation according to the chromosome aberration frequency in the peripheral blood lymphocytes after in vitro and in vivo radiation exposures. The experimental RBE assessment of tritium β-radiation relative to 60Co γ-radiation according to unstable chromosome aberration frequency in the peripheral blood lymphocytes under particular conditions is described. It has been demonstrated that tritium β-radiation is, in general, more effective in the dose range of up to 1 Gy, which is most pronounced at low doses. The RBE value of tritium β-radiation at minimum doses reached 2.2 and decreased at higher doses (1 Gy) to 1.25. The data on comparative analysis of the frequency of stable chromosome aberrations in the blood lymphocytes of professional nuclear workers (Sarov, Russia) after long-term chronic exposure to tritium β-radiation, as compared with γ-irradiation, are reported for the first time. The higher biological effectiveness of tritium β-radiation was demonstrated and was estimated as 2.5.  相似文献   

19.
Miura T  Blakely WF 《Cytometry. Part A》2011,79(12):1016-1022
Calyculin A-induced premature chromosome condensation (PCC) assay is a simple and useful method to assess structural and numerical chromosome aberrations in cells. Our hypothesis in this study is that suboptimum calyculin A induction of PCC resulting in fuzzy compactness and/or shortened length chromosomes would decrease the detection sensitivity of numerical and structural chromosome aberrations such as small PCC rings and small excess fragments. In this study, an optimization of calyculin A exposure on chromosome morphology and PCC induction frequency was investigated using a human peripheral blood lymphocyte (PBL) ex vivo irradiation ((60) Co-γ rays; ~0.6 Gy/min; 0-30 Gy) model. Treatment with calyculin A (50 nM) for 15 and 30 min resulted in 11.3 ± 2.7 and 9.9 ± 1.6-fold increases in the frequency of G(2) /M-PCC cells with extended length chromosomes compared with the 60-min treated group over a broad dose range (0 to 20 Gy), respectively. The G(2) /M-PCC scoring index per PCC in 15- and 30-min treated groups was increased by 1.9 ± 0.2 (P = 0.001) and 1.8 ± 0.2 (P = 0.001) compared with the 60-min treated group over 0-20 Gy, respectively. The G(2) /M-PCC efficiency of 30-min treated group was highest in the three conditions (i.e., 15-, 30-, and 60-min treatment) of calyculin A exposure. Calyculin A (50 nM) treatment for 30 min before the 48-h harvest of mitogen-stimulated human PBL is optimum for the formation of suitable chromosome morphology necessary to assess structural chromosome aberrations induced by exposure to radiation using the chemical induced-PCC assay. Published 2011 Wiley Periodicals, Inc.  相似文献   

20.
Primary mouse ear and kidney cultures were established for determination of cytogenetic aberrations at short (3 days to 1 month) and long (12-23 months) times after exposure of their right sides to 7.5 Gy of (137)Cs gamma radiation. In every case, higher levels of aberrations were observed in primary cultures established from the irradiated tissues than in those established from the contralateral tissues. The most common aberrations in the contralateral tissues and those from nonirradiated mice were chromatid and isochromatid breaks and small chromatid fragments. Primary cells from irradiated tissues removed from animals within a month of exposure displayed a variety of unstable chromosome-type aberrations characteristic of recent exposure to ionizing radiation including rings, dicentrics, double minutes, and large acentric fragments. The percentages of cells exhibiting chromatid breaks and small chromatid fragments were also markedly elevated. Although the levels of chromosome-type aberrations found in primary cells from irradiated tissues dropped to near background levels a year or more after exposure, chromatid-type aberrations remained elevated. These results are consistent with long-term persistence of damage in the genomes of ionizing radiation-exposed cells in solid tissues and the induction of genomic instability in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号