首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucolipin-1 (MLN1) is a membrane protein with homology to the transient receptor potential channels and other non-selective cation channels. It is encoded by the MCOLN1 gene, which is mutated in patients with mucolipidosis type IV (MLIV), an autosomal recessive disease that is characterized by severe abnormalities in neurological development as well as by ophthalmologic defects. At the cellular level, MLIV is associated with abnormal lysosomal sorting and trafficking. Here we identify the channel function of human MLN1 and characterize its properties. MLN1 represents a novel Ca(2+)-permeable channel that is transiently modulated by changes in [Ca(2+)]. It is also permeable to Na(+) and K(+). Large unitary conductances were measured in the presence of these cations. With its Ca(2+) permeability and modulation by [Ca(2+)], MLN1 could play a major role in Ca(2+) transport regulating lysosomal exocytosis and potentially other phenomena related to the trafficking of late endosomes and lysosomes.  相似文献   

2.
Resealing after wounding, the process of repair following plasma membrane damage, requires exocytosis. Vacuolins are molecules that induce rapid formation of large, swollen structures derived from endosomes and lysosomes by homotypic fusion combined with uncontrolled fusion of the inner and limiting membranes of these organelles. Vacuolin-1, the most potent compound, blocks the Ca(2+)-dependent exocytosis of lysosomes induced by ionomycin or plasma membrane wounding, without affecting the process of resealing. In contrast, other cell structures and membrane trafficking functions including exocytosis of enlargeosomes are unaffected. Because cells heal normally in the presence of vacuolin-1, we suggest that lysosomes are dispensable for resealing.  相似文献   

3.
Lysosomes are dynamic organelles receiving membrane traffic input from the biosynthetic, endocytic and autophagic pathways. They may be regarded as storage organelles for acid hydrolases and are capable of fusing with late endosomes to form hybrid organelles where digestion of endocytosed macromolecules occurs. Reformation of lysosomes from the hybrid organelles involves content condensation and probably removal of some membrane proteins by vesicular traffic. Lysosomes can also fuse with the plasma membrane in response to cell surface damage and a rise in cytosolic Ca 2+ concentration. This process is important in plasma membrane repair. The molecular basis of membrane traffic pathways involving lysosomes is increasingly understood, in large part because of the identification of many proteins required for protein traffic to vacuoles in the yeast Saccharomyces cerevisiae. Mammalian orthologues of these proteins have been identified and studied in the processes of vesicular delivery of newly synthesized lysosomal proteins from the trans-Golgi network, fusion of lysosomes with late endosomes and sorting of membrane proteins into lumenal vesicles. Several multi-protein oligomeric complexes required for these processes have been identified. The present review focuses on current understanding of the molecular mechanisms of fusion of lysosomes with both endosomes and the plasma membrane and on the sorting events required for delivery of newly synthesized membrane proteins, endocytosed membrane proteins and other endocytosed macromolecules to lysosomes.  相似文献   

4.
Loss of function mutations in mucolipin-1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a recessive lysosomal storage disease characterized by severe neurological and ophthalmological abnormalities. MCOLN1 is an ion channel that regulates membrane transport along the endolysosomal pathway. It has been suggested that MCOLN1 participates in several Ca2+-dependent processes, including fusion of lysosomes with the plasma membrane, fusion of late endosomes and autophagosomes with lysosomes, and lysosomal biogenesis. Here, we searched for proteins that interact with MCOLN1 in a Ca2+-dependent manner. We found that the penta-EF-hand protein ALG-2 binds to the NH-terminal cytosolic tail of MCOLN1. The interaction is direct, strictly dependent on Ca2+, and mediated by a patch of charged and hydrophobic residues located between MCOLN1 residues 37 and 49. We further show that MCOLN1 and ALG-2 co-localize to enlarged endosomes induced by overexpression of an ATPase-defective dominant-negative form of Vps4B (Vps4BE235Q). In agreement with the proposed role of MCOLN1 in the regulation of fusion/fission events, we found that overexpression of MCOLN1 caused accumulation of enlarged, aberrant endosomes that contain both early and late endosome markers. Interestingly, aggregation of abnormal endosomes was greatly reduced when the ALG-2-binding domain in MCOLN1 was mutated, suggesting that ALG-2 regulates MCOLN1 function. Overall, our data provide new insight into the molecular mechanisms that regulate MCOLN1 activity. We propose that ALG-2 acts as a Ca2+ sensor that modulates the function of MCOLN1 along the late endosomal-lysosomal pathway.  相似文献   

5.
In the late endocytic pathway, it has been proposed that endocytosed macromolecules are delivered to a proteolytic environment by 'kiss-and-run' events or direct fusion between late endosomes and lysosomes. To test whether the fusion hypothesis accounts for delivery to lysosomes in living cells, we have used confocal microscopy to examine content mixing between lysosomes loaded with rhodamine-dextran and endosomes subsequently loaded with Oregon-Green-dextran. Both kissing and explosive fusion events were recorded. Data from cell-free content-mixing assays have suggested that fusion is initiated by tethering, which leads to formation of a trans-SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein complex and then release of lumenal Ca(2+), followed by membrane bilayer fusion. We have shown that the R-SNARE (arginine-containing SNARE) protein VAMP (vesicle-associated membrane protein) 7 is necessary for heterotypic fusion between late endosomes and lysosomes, whereas a different R-SNARE, VAMP 8 is required for homotypic fusion of late endosomes. After fusion of lysosomes with late endosomes, lysosomes are re-formed from the resultant hybrid organelles, a process requiring condensation of content and the removal/recycling of some membrane proteins.  相似文献   

6.
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.  相似文献   

7.
Lysosomes are dynamic organelles receiving membrane traffic input from the biosynthetic, endocytic and autophagic pathways. They may be regarded as storage organelles for acid hydrolases and are capable of fusing with late endosomes to form hybrid organelles where digestion of endocytosed macromolecules occurs. Reformation of lysosomes from the hybrid organelles involves content condensation and probably removal of some membrane proteins by vesicular traffic. Lysosomes can also fuse with the plasma membrane in response to cell surface damage and a rise in cytosolic Ca(2+) concentration. This process is important in plasma membrane repair. The molecular basis of membrane traffic pathways involving lysosomes is increasingly understood, in large part because of the identification of many proteins required for protein traffic to vacuoles in the yeast Saccharomyces cerevisiae. Mammalian orthologues of these proteins have been identified and studied in the processes of vesicular delivery of newly synthesized lysosomal proteins from the trans-Golgi network, fusion of lysosomes with late endosomes and sorting of membrane proteins into lumenal vesicles. Several multi-protein oligomeric complexes required for these processes have been identified. The present review focuses on current understanding of the molecular mechanisms of fusion of lysosomes with both endosomes and the plasma membrane and on the sorting events required for delivery of newly synthesized membrane proteins, endocytosed membrane proteins and other endocytosed macromolecules to lysosomes.  相似文献   

8.
We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway.  相似文献   

9.
Rab5 is a small GTPase that plays roles in the homotypic fusion of early endosomes and regulation of intracellular vesicle transport. We show here that expression of GFP-tagged GTPase-deficient form of Rab5b (Rab5bQ79L) in NRK cells results in the sequential formation of three morphologically and functionally distinct types of endosomes. Expression of GFP-Rab5bQ79L initially caused a homotypic fusion of early endosomes accompanying a redistribution of the TGN-resident cargo molecules, and subsequent fusion with late endosomes/lysosomes, leading to the formation of giant hybrid organelles with features of early endosomes and late endosomes/lysosomes. Surprisingly, the giant endosomes gradually fragmented and shrunk, leading to the accumulation of early endosome clusters and concurrent reformation of late endosomes/lysosomes, a process accelerated by treatment with a phosphatidylinositol-3-kinase (PI(3)K) inhibitor, wortmannin. We postulate that such sequential processes reflect the biogenesis and maintenance of late endosomes/lysosomes, presumably via direct fusion with early endosomes and subsequent fission from hybrid organelles. Thus, our findings suggest a regulatory role for Rab5 in not only the early endocytic pathway, but also the late endocytic pathway, of membrane trafficking in coordination with PI(3)K activity.  相似文献   

10.
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells’ functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re‐expression of TRPML1 in neurons. These features were not observed in Niemann–Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.  相似文献   

11.
Mucolipidosis type IV (MLIV) is caused by mutations in the ion channel mucolipin 1 (TRP-ML1). MLIV is typified by accumulation of lipids and membranous materials in intracellular organelles, which was hypothesized to be caused by the altered membrane fusion and fission events. How mutations in TRP-ML1 lead to aberrant lipolysis is not known. Here we present evidence that MLIV is a metabolic disorder that is not associated with aberrant membrane fusion/fission events. Thus, measurement of lysosomal pH revealed that the lysosomes in TRP-ML1(-/-) cells obtained from the patients with MLIV are over-acidified. TRP-ML1 can function as a H(+) channel, and the increased lysosomal acidification in TRP-ML1(-/-) cells is likely caused by the loss of TRP-ML1-mediated H(+) leak. Measurement of lipase activity using several substrates revealed a marked reduction in lipid hydrolysis in TRP-ML1(-/-) cells, which was rescued by the expression of TRP-ML1. Cell fractionation indicated specific loss of acidic lipase activity in TRP-ML1(-/-) cells. Furthermore, dissipation of the acidic lysosomal pH of TRP-ML1(-/-) cells by nigericin or chloroquine reversed the lysosomal storage disease phenotype. These findings provide a new mechanism to account for the pathogenesis of MLIV.  相似文献   

12.
Mouse SKD1 AAA ATPase is involved in the sorting and transport from endosomes; cells overexpressing a dominant-negative mutant, SKD1(E235Q) were defective in endosomal transport to both the plasma membranes and lysosomes (Yoshimori et al., 2000). In the present study, we demonstrated that overexpression of SKD1(E235Q) using an adenovirus delivery system caused a defect in autophagy-dependent bulk protein degradation. Morphological observations suggested that this inhibition of autophagy results from an impairment of autolysosome formation. SKD1(E235Q) overexpression also inhibited transport from endosomes to autophagosomes, an event normally occurring prior to fusion with lysosomes. These results indicate that SKD1-dependent endosomal membrane trafficking is required for formation of autolysosomes.  相似文献   

13.
Ehlers MD 《Neuron》2000,28(2):511-525
Both acute and chronic changes in AMPA receptor (AMPAR) localization are critical for synaptic formation, maturation, and plasticity. Here I report that AMPARs are differentially sorted between recycling and degradative pathways following endocytosis. AMPAR sorting occurs in early endosomes and is regulated by synaptic activity and activation of AMPA and NMDA receptors. AMPAR intemalization triggered by NMDAR activation is Ca2+-dependent, requires protein phosphatases, and is followed by rapid membrane reinsertion. Furthermore, NMDAR-mediated AMPAR trafficking is regulated by PKA and accompanied by dephosphorylation and rephosphorylation of GluR1 subunits at a PKA site. In contrast, activation of AMPARs without NMDAR activation targets AMPARs to late endosomes and lysosomes, independent of Ca2+, protein phosphatases, or PKA. These results demonstrate that activity regulates AMPAR endocytic sorting, providing a potential mechanistic link between rapid and chronic changes in synaptic strength.  相似文献   

14.
Yuzaki M 《Neuron》2010,68(1):4-6
Late endosome-lysosome trafficking plays a key role in regulating cell surface signaling and degradation of intracellular components by autophagy. New work by Cai and coworkers in this issue of Neuron provides evidence that snapin regulates the recruitment of late endosomes to the dynein motor complex for retrograde trafficking along microtubules and maturation of lysosomes.  相似文献   

15.
Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process can be modulated by the heterotrimeric G proteins Gs and Gi, consistent with activation or inhibition of adenylyl cyclase. Normal rat kidney cell stimulation with isoproterenol, a beta-adrenergic agonist that activates adenylyl cyclase, enhances Ca2+-dependent lysosome exocytosis and cell invasion by Trypanosoma cruzi, a process that involves parasite-induced [Ca2+]i transients and fusion of host cell lysosomes with the plasma membrane. Similarly to what is observed for T. cruzi invasion, the actin cytoskeleton acts as a barrier for Ca2+-induced lysosomal exocytosis. In addition, infective stages of T. cruzi trigger elevation in host cell cAMP levels, whereas no effect is observed with noninfective forms of the parasite. These findings demonstrate that cAMP regulates lysosomal exocytosis triggered by Ca2+ and a parasite/host cell interaction known to involve Ca2+-dependent lysosomal fusion.  相似文献   

16.
The mechanism of plasma membrane trafficking and degradation is still poorly understood. This investigation deals with the biogenesis of lysosomes during endocytic flow in Marshall cells and in various cell types of the male reproductive system. Marshall cells were exposed to ammonium chloride (NH4Cl) and leupeptin after labeling with cationic ferritin. In some experiments, the treated cells were immunogold labeled with anti-prosaposin antibody. NH4Cl and leupeptin are lysosomotropic agents that affect the endosomal-lysosomal progression. Testes, efferent ducts and epididymis from mouse mutants with defects affecting plasma membrane degradation were also used to analyze this process. NH4Cl produced a retention of cationic ferritin in endosomes and hindered the endosomal/lysosomal progression. Leupeptin did not affect this process. NH4Cl decreased the labeling of prosaposin in endosomes and lysosomes, while leupeptin increased the labeling of prosaposin in lysosomes. The number of lysosomes per cytoplasmic area was higher in treated cells than in controls. These findings suggest that leupeptin affected lysosomes whereas NH4Cl affected both endosomes and lysosomes. The endosomal and lysosomal accumulation of prosaposin induced by the treatment with NH4Cl and leupeptin indicated that the site of entry of prosaposinwas both the lysosome and endosome. Electron microscopy (EM) of tissues from mouse mutants with defects affecting plasma membrane degradation substantiated these observations. The EM analysis revealed a selective accumulation of multivesicular bodies (MVBs) and the disappearance of lysosomes, in testicular fibroblasts, nonciliated cells of the efferent ducts and principal cells of the epididymis, suggesting that MVBs are precursors of lysosomes. In conclusion: (1) endosomes and MVBs are a required steps for degradation of membranes; (2) endosomes and MVBs are precursors of lysosomes; and (3) endosomes, MVBs, and lysosomes appear to be transient organelles.  相似文献   

17.
Mucolipidosis IV (MLIV) is a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. In contrast with most lysosomal storage disorders, which are attributed to the absence of specific lysosomal hydrolases, accumulation of material in MLIV results from defects in membrane transport along the late endocytic pathway. Mutations in MCOLN1 are the cause of MLIV; however, how the lack of MCOLN1 function ultimately leads to neurodegeneration remains largely unknown. We found that MCOLN1 is required for efficient fusion of both late endosomes and autophagosomes with lysosomes. Impaired autophagosome degradation results in accumulation of autophagosomes in MLIV fibroblasts. In addition, we found increased levels and aggregation of p62, suggesting that abnormal accumulation of ubiquitinated protein inclusions may contribute to the neurodegenerative phenotype observed in MLIV patients. These findings corroborate recent evidence indicating that defects in autophagy may be a common feature of many neurodegenerative disorders.  相似文献   

18.
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes.  相似文献   

19.
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell–cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies. This work was supported by NIH grants R01-GM36387 and P01-HLHL18708 (G.R.D.).  相似文献   

20.
Similar to its role in secretory cells, calcium triggers exocytosis in nonsecretory cells. This calcium-dependent exocytosis is essential for repair of membrane ruptures. Using total internal reflection fluorescence microscopy, we observed that many organelles implicated in this process, including ER, post-Golgi vesicles, late endosomes, early endosomes, and lysosomes, were within 100 nm of the plasma membrane (in the evanescent field). However, an increase in cytosolic calcium led to exocytosis of only the lysosomes. The lysosomes that fused were predominantly predocked at the plasma membrane, indicating that calcium is primarily responsible for fusion and not recruitment of lysosomes to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号