首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The oxidized form of vitamin C (dehydroascorbic acid, DHA) completely and irreversibly inactivates recombinant human hexokinase type I, in a pseudo-first order fashion. The inactivation reaction occurs without saturation, indicating that DHA does not form a reversible complex with hexokinase. Further characterization of this response revealed that the inactivation does not require oxygen and that dithiothreitol, while able to prevent the DHA-mediated loss of enzyme activity, failed to restore the activity of the DHA-inhibited enzyme. Inactivation was not associated with cleavage of the peptide chain or cross-linking. The decay in enzymatic activity was however both dependent on deprotonation of a residue with an alkaline pKa and associated with covalent binding of DHA to the protein. In addition, inactivation of hexokinase decreased or increased, respectively, in the presence of the substrates glucose or MgATP. Finally, amino acid analysis of the DHA-modified hexokinase revealed a decrease of cysteine residues.Taken together, the above results are consistent with the possibility that covalent binding of the reagent with a thiol group of cysteine is a critical event for the DHA-mediated loss of hexokinase activity.  相似文献   

2.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

3.
1-Pyrrolidinecarbothioic acid (2-pyridylmethylene) hydrazide chelates Zn2+ but not Mg2+. This compound is about twice as effective as EDTA for inhibiting alkaline phosphatase from calf mucosa, and approx. 1000-fold more effective than EDTA for inhibiting acid phosphatase from wheat germ. The compound did not inhibit pyridoxine kinase activity in human leucocytes at the highest concentration tested (33 micron). Therefore it may be a useful tool for either examining or eliminating the effects of phosphatases in complex enzyme systems.  相似文献   

4.
N-Bromoacetylethanolamine phosphate rapidly and irreversibly inactivates rabbit muscle phosphoglycerate mutase. At high molar ratios of reagent to enzyme, loss of activity (both mutase and phosphatase) approximates pseudo-first order kinetics. A rate-saturation effect is observed with half-maximal rate of inactivation occurring at 0.32 mM reagent, a value close to the Km for 3-phosphoglyceric acid. This datum and the dissociation constant of the 2,3-bisphosphoglycerate-enzyme complex, as determined from inactivation kinetics in the presence of the bisphosphate, suggest that the reagent reacts at the substrate binding site. Inactivation results from the covalent incorporation of about 0.8 mol of reagent/mol of catalytic subunit as determined with 14C-labeled reagent. Incorporation is negligible in the presence of substrate and is reduced 8-fold in the presence of 6 M urea. From amino acid analyses on acid hydrolysates of the inactivated enzyme, we have identified a sulfhydryl group as the site of alkylation. A peptide containing the essential sulfhydryl group has been isolated from a tryptic digest of the enzyme inactivated with labeled reagent; its amino acid composition is Trp1, Lys1,-Cys(Cm)1, Asp1, Ser1, Glu2, Gly1, Ala1, Leu1, Phe2.  相似文献   

5.
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

6.
1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the -amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This -amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation.  相似文献   

7.
12-Iodo-cis-9-octadecenoic acid (12-IODE) is a time-dependent, irreversible inactivator of soybean lipoxygenase 1. The rate of inactivation is independent of 12-IODE concentration above 20 microM and is half-maximal at about 4 microM. Inactivation by 12-IODE requires lipid hydroperoxide, which must be present even after the initial oxidation of the iron in the enzyme from ferrous to ferric. Inactivation by 12-IODE is also dependent on O2. These findings suggest that 12-IODE is converted by the enzyme into a more reactive species, which is responsible for inactivation. No inactivation has been detected with 12-iodooctadecanoic acid, 12-bromo-cis-9-octadecenoic acid, 12-iodo-trans-9-octadecenoic acid, or a mixture of stereoisomers of 9,11-octadecadienoic acid.  相似文献   

8.
Summary A primary mechanism of amino acid inhibition of intestinal alkaline phosphatase is postulated to be the formation of a dissociable enzyme-amino acid complex at an allosteric zinc site. The degree of inhibition was highly correlated with the Zn2+ stability constant of each amino acid and the inhibition was reversible by the addition of exogenous Zn2+ or by dialysis. This allosteric amino acid inhibition proved to be a useful probe of the membrane arrangement of the enzyme in the intact tissue. The catalytic site appears to face the lumen based on the poor permeability of the substrate, the accumulation of the coproducts in the luminal bath, and the response of the enzyme to luminal pH. Amino acid inhibition of alkaline phosphatase in the intact tissue was only effective in the presence of sodium; whereas sodium was not required in butanol extracted preparations which lacked the sidedness of the intact tissue. Since amino acid uptake from the intestine is sodium dependent, the allosteric inhibitory site is probably intracellular. The results suggest that the intestinal alkaline phosphatase spans the apical membrane with the catalytic site accessible from the lumen and the allosteric inhibitory site from the cytoplasm.  相似文献   

9.
The carbethoxylation of prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was accompanied by modification of histidine residues and the inactivation of the enzyme. These findings are consistent with photoinactivation experiments described earlier (Rybarska, J. and Ostrowski, W (1974) Acta Biochim, Polon. 21, 377--390). Prostatic acid phosphatase was phosphorylated at alkaline pH using p-nitrophenyl [32P]phosphate as substrate. Phosphoryl enzyme is stable in alkaline solutions and undergoes dephosphorylation at acidic pH. After hydrolysis of phosphoryl enzyme in strong alkaline solution, a single phosphoryl amino acid was isolated from hydrolyzate and identified as the tau-phosphohistidine.  相似文献   

10.
1. Acid and alkaline phosphatase activities were studied in rat and dog aortic muscle using p-nitrophenyl phosphate (p-NPP) as the substrate. Alkaline phosphatase activity was quite comparable to acid phosphatase activity in rat aortic microsomes as well as further purified plasma membranes, but considerably lower than acid phosphatase activity in dog aortic membranes. 2. Subcellular distribution of acid and alkaline phosphatase activities in these vascular muscles indicated that alkaline phosphatases and a large portion of acid phosphatase activities were primarily associated with plasma membranes and the distribution of acid phosphatase showed little resemblance to that of N-acetyl-beta-glucosaminidase, a lysosomal marker enzyme. 3. The rat aortic plasmalemmal acid and alkaline phosphatase activities responded very differently to magnesium, fluoride, vanadate and EDTA. The alkaline phosphatase was more susceptible to heat inactivation than acid phosphatase. 4. These results suggest that these two phosphatases are likely to be two different enzymes in the smooth muscle plasma membranes. The implication of the present findings is discussed in relation to the alteration of these phosphatases in hypertensive vascular diseases.  相似文献   

11.
Acid and alkaline phosphosphatase activities of subcellular fractions isolated from rat gastric muscle and vas deferens by differential centrifugation, sucrose density gradient and cation-induced aggregation methods were studied using p-nitrophenyl phosphate as the substrate. Alkaline phosphatase and a large portion of acid phosphatase activities were found to be of plasmalemmal origin. Acid and alkaline phosphatase activities were different in the effect of Mg2+, fluoride, vanadate, EDTA and resistance to heat inactivation suggesting that these two phosphatase activities were not expressed by the same enzyme.  相似文献   

12.
1. The three isozymes of glycerate-2,3-P2 dependent phosphoglycerate mutase present in tissues of mammals and reptiles were inactivated by both treatment with diethylpyrocarbonate and photooxidation with rose bengal. 2. Inactivation of type M isozyme purified from rabbit muscle was complete when two histidine residues per enzyme subunit were carboethoxylated. Hydroxylamine removed the carboethoxy groups, with partial recovery of the enzymatic activity. The cofactor protected the enzyme against inactivation. 3. The inactivation of rabbit muscle phosphoglycerate mutase by photooxidation with methylene blue and rose bengal was sharply pH dependent. The pH profile of enzyme inactivation followed the titration curve of histidine, suggesting that this amino acid was critical for enzyme activity. Glycerate-2,3-P2 did not protect phosphoglycerate mutase against photoinactivation.  相似文献   

13.
Extracts of adult Paramphistomum explanatum have been shown to contain high concentration of acid phosphomonoesterase with maximum activity at pH 4.5. The enzyme has been characterized by an exhibition of an unexpected increase in the inhibitory action of a mercury at 1 mM concentration by EDTA. With a lower concentration of mercury (0.1 mM and below) EDTA gave partial protection against inhibition. Different concentrations of magnesium and cobalt activated the enzyme while fluoride, copper, arsenate, tartrate and p-mercuribenzoate brought about inhibition. EDTA, glycine, glutathione and sodium azide had no effect. There was an indication of the presence of alkaline phosphomonoesterase at pH 10.0. The Km for p-nitrophenyl phosphate hydrolysis was 0.45 mM at pH 4.5.  相似文献   

14.
The action of cyanate on human and pig kidney alkaline phosphatases   总被引:3,自引:2,他引:1       下载免费PDF全文
1. At concentrations of cyanate up to 0.2m there is an apparently reversible combination with alkaline phosphatase (EC 3.1.3.1), but higher concentrations inhibit alkaline phosphatase irreversibly by a process that is time-dependent. 2. The effect of 0.2m-cyanate on the enzymic reaction velocity depends on the substrate concentration. There is inhibition when the substrate concentration is 1.0mm or higher, but at lower substrate concentrations cyanate has an activating effect. 3. The pH-dependence of the reversible reaction suggests that cyanate may react with a thiol group at or near the active site of the enzyme, preventing a conformational change that is believed to be important in the mechanism of action of alkaline phosphatase. 4. Prolonged treatment with 0.6m-cyanate probably carbamoylates all free amino groups in the enzyme molecule and generates a new enzyme with decreased V(max.) and increased K(m).  相似文献   

15.
Glutathione transferase (GST) from octopus hepatopancreas was rapidly inactivated by micromolar concentration of Cu(II) in the presence of ascorbate at neutral pH and 0°C. Omitting the metal ion or ascorbate, or replacing the Cu(II) with Fe(II) did not result in any inactivation. Glutathione or the conjugation product of glutathione and 1-chloro-2,4-dinitrobenzene offered complete protection of the enzyme from Cu(II)-induced inactivation. 1-Chloro-2,4-dinitrobenzene, however, did not provide any protection. The inactivation was time and Cu(II) concentration dependent. The dependence of inactivation rate on Cu(II) concentration displayed saturation kinetics, which suggests that the inactivation occurs in two steps with Cu(II) binding with the enzyme first (KdCu = 260 μM), then the locally generated free radicals modify the essential amino acid residues in the active center, which results in enzyme inactivation. The Cu(II)-ascorbate system is, thus, an affinity reagent for the octopus GST. The enzyme inactivation was demonstrated to be followed by protein cleavage. Native octopus GST has a subunit Mr of 24,000. The inactivated enzyme was cleaved at the C-terminal domain (domain II) of the enzyme molecule and resulted in the formation of peptide fragment of Mr 15,300, which has the identical N-terminal amino acid sequence as the native enzyme. The other half of the peptide with Mr approximately 7700 was visible in the gels only after silver staining, which also revealed a minor cleavage site, also located at the domain II, to produce peptide fragments of Mr approximately 11,300 and 8300. The oxygen carrier molecule in the cephalopods' blood is the copper-containing hemocyanin, which during turnover will release Cu(II). Our results indicate that Cu(II) catalyzes a site-specific oxidation of the essential amino acid residues at the C-terminus of GST causing enzyme inactivation. The modified-enzyme is then affinity cleaved at the putative metal binding site. The ability of octopus GST to bind with free Cu(II) may have important biological implications to enable cephalopods to avoid copper-induced cellular toxicity.  相似文献   

16.
The smallest of the three molecular weight forms of acid phosphatase from bovine liver was purified to a specific activity of 100 μmol min?1 mg?1 (measured at pH 5.5 and 37 °C with p-nitrophenyl phosphate). Using several chromatographie and electrophoretic methods, no evidence of heterogeneity was detected. The enzyme was characterized with respect to its stability as a function of pH, molecular weight, amino acid composition, steady-state kinetic parameters in the pH range 4–7 and inhibition by common acid phosphatase inhibitors at pH 5.5. The amino acid composition differed somewhat from a previous literature report. The enzyme was stoichiometrically inactivated upon incubation with Hg2+, Ag+, and iodoacetate. Inactivation also occurred upon photoinactivation in the presence of Rose Bengal but no inactivation occurred with diethyl pyrocarbonate. The alkylation of one of five cysteine residues by iodoacetate was shown to cause complete inactivation of the enzyme. This alkylation was prevented by the presence of phosphate ion. A tryptic dipeptide containing this essential cysteine was isolated following inactivation with iodo[2-14C]acetate.  相似文献   

17.
A factor inactivating phosphorylase phosphatase was isolated from rabbit liver. The isolation procedure consisted of heat treatment at 85 degrees C, extraction with n-butyl alcohol, and chromatography on Dowex 1 and DEAE-cellulose columns. The purified factor was different from the known protein inhibitors and was shown to be tripeptide composed of equimolar amounts of glutamic acid, cysteine, and glycine. The NH2-terminal and COOH-terminal amino acids were determined as glutamic acid and glycine, respectively. The factor was finally identified as glutathione disulfide by high voltage paper electrophoresis, paper chromatography, and liquid column chromatography using an amino acid analyzer. Addition of the purified factor or glutathione disulfide converted phosphorylase phosphatase to a stable, less active enzyme species, the extent of conversion depending on the amount added. The inactivated phosphatase was completely reactivated by addition of both glutathione (or 2-mercaptoethanol) and Mn2+ and partially reactivated by adding glutathione alone. Injection of glutathione disulfide into the portal vein of rabbits caused a rapid increase in phosphorylase alpha activity in the liver. These results suggest that glutathione disulfide is involved in regulation of phosphorylase activity in vivo, by causing inactivation of phosphorylase phosphatase in the liver.  相似文献   

18.
1. The carbohydrate content of isozyme K of alkaline phosphatase (EC 3.1.3.1) from harp seal intestinal mucosa was examined. The presence of N-acetylglucosamine, N-acetylgalactosamine and considerable amounts of mannose residues was shown. 2. The amino acid content of seal alkaline phosphatase was determined. A high extent of homology (85%) between bovine and seal alkaline phosphatases was demonstrated. 3. By chemical modification lysine, dicarboxylic acids, arginine and tyrosine residues of tetrameric seal alkaline phosphatase are located near or at the active site. By contrast, the modification of either thiol or imidazole groups resulted in no alterations of the enzyme activity. 4. It has been demonstrated that inorganic phosphate is an inhibitor of alkaline phosphatase and entirely prevents the enzyme inactivation with succinic anhydride.  相似文献   

19.
The amino acid residue(s) involved in the activity of buckwheat α-glucosidase was modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester. The modification resulted in the decrease in the hydrolytic activity of the enzyme following pseudo-first order kinetics. Competitive inhibitors, such as Tris and turanose, protected the enzyme against the inactivation. Protection was provided also by alkali metal, alkaline-earth metal and ammonium ions, though these cations are non-essential for the activity of the enzyme. Turanose or K+ protected one carboxyl group per enzyme from the modification with carbodiimide and glycine ethyl ester. Free sulfhydryl group of the enzyme was also partially modified with carbodiimide, but the inactivation was considered to be mainly attributed to the modification of essential carboxyl group rather than to that of free sulfhydryl group.  相似文献   

20.
绮丽刺毛霉的一种新型甘氨酸氨肽酶的研究   总被引:4,自引:0,他引:4  
研究了产自于绮丽刺毛霉(Actinomucor elegans)的一种甘氨酸氨肽酶。分子筛层析表明该酶的天然分子的分子量为320kD,SDSPAGE分析表明蛋白质的亚基分子量为565kD。该酶水解含有甘氨酸残基的底物(如glycinenaphthylamine)的效率要较其它氨基酸残基高得多。该酶的最佳反应温度为30℃,最佳pH为8.0。酶的Km和Kcat值分别为0.24mmol/L与1008 s-1。1.0mmol/L Zn2+,Cu2+和Cd2+可完全抑制该酶的活性。作用于酶巯基的化学物质对酶活性都有抑制作用。根据络合剂反应的实验结果表明该酶是一种含有金属的酶。当与蛋白酶共同作用时该酶除了甘氨酸外还能提高脯氨酸、精氨酸及谷氨酸的水解率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号