首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The body wall muscles in five species of branchiobdellidans are all arranged in the oligochaete pattern and the muscle fibres are obliquely striated. The structure of the circular muscle fibres do vary to some degree. The longitudinal muscle fibres in Ankyrodrilus legaeus, Branchiobdella kozarovi, and Xironogiton instabilis all are round circomyarian and thus double-obliquely striated. These species represent three of the four genera composing the family Branchiobdellidae. Although Bdellodrilus illuminatus and Cambarincola fallax, from the families Bdellodrilidae and Cambarincolidae, respectively, also possess a few round circomyarian fibres, most are polyplatymyarian comparable to single-obliquely striated fibres. A similar division of branchiobdellidan families is obtained based on the number of anterior nephridial pores. The muscular structure in the branchiobdellidans shows both similarities and differences with the leeches and the lumbriculid oligochaetes. One phylogenetic explanation for this is that the branchiobdellidans separated from the common clitellate ancestor before the oligochaetes and leeches became recognizable taxa.  相似文献   

2.
Bacteria were readily isolated from the hemolymph of a majority (88%) of the blue crabs collected from Galveston Bay, Texas. The hemolymph of most crabs contained moderate (greater than 10(3) bacteria/ml) to heavy (greater than (10(5) bacteria/ml) infections. Large variances were observed in the bacterial number associated with individual crabs, but no significant difference was observed between the mean bacterial levels in the hemolymph of crabs collected during different seasons of the sampling year. Vibrio spp. were the predominant bacterial types in the hemolymph of infected crabs and increased in number significantly during the summer season. Warmer water temperatures were thought to be responsible for this increase. Bacterial numbers and the percentage of Vibrio spp. were highest in the interior of the crab bodies, especially in the digestive tract. The exterior of the crabs did not appear to be the source of the hemolymph's bacterial flora. Bacteria taxonomically identical to Vibrio cholerae. V. vulnificus, and V. parahaemolyticus were routinely isolated from the crab hemolymph and external carapace. V. parahaemolyticus was the most prevalent of the pathogenic Vibrio spp. and was isolated from 23% of the hemolymph samples. V. vulnificus (7%) and V. cholerae (2%) occurred less commonly in the hemolymph. The incidences of V. parachaemolyticus and V. vulnificus were related and increased in the summer months. Both organisms were frequently isolated from the same crab.  相似文献   

3.
Leeches exhibit a marked scope of diversity, including different kinds of symbiosis. The aim of the present study was to demonstrate through biochemical and histological analysis that a species of piscicolid leech, Myzobdella platensis, is a true parasite of blue crabs, feeding on their hemolymph and using them as a site for cocoon deposition. In a total of 48 blue crabs collected on October 2007 at 3 sites of the S?o Vicente Estuary, 12 specimens were infested with leeches. Callinectes bocourti (n = 7) was the most infested species with leeches and cocoons; it was chosen for biochemical and histological assays. The immunoblotting assays showed a positive reaction of the proteins in the intestinal samples of leeches collected from crabs using antihemocyanin polyclonal antibody of Ampullaria canaliculata. In addition, leech intestinal samples were recognized by antihemolymph polyclonal antibody of nonparasitized blue crabs. Histological sections of leech gut showed hemocytes and a granular matrix similar to those found in crab blood vessels. Collectively, this evidence strongly suggests a parasitic interaction between the leech M. platensis and the blue crab C. bocourti, in which the former utilizes the latter as a site for cocoon deposition and possibly for dispersal similar to that proposed for Myzobdella lugubris in Callinectes sapidus in North America.  相似文献   

4.
The hemolymph of 290 freshly collected blue crabs from Chincoteague Bay, Va., was sampled over a 15-month period from August 1968 through November 1969 and most probable numbers of bacteria were determined by tube dilution. The hemolymph of 18% of all crabs sampled was found to be sterile, with 16% sterility in summer and 23% in winter samples. Despite individual variations, male crabs as a group had a higher bacterial hemolymph burden than females, and among both sexes summer counts were higher than winter. The hemolymph of crabs with missing appendages had significantly higher counts than uninjured crabs. The annual mean hemolymph most probable numbers per ml was 2,756 for males, 1,300 for females, and 1,876 for both sexes. The higher bacterial levels found in the hemolymph of male crabs may, in part, be explained by the fact that males, which predominated in the summer samples, had a higher incidence of injury and missing appendages than did females.  相似文献   

5.
Salt marshes and shallow-water macroalgal beds are known to provide nursery habitat for many species of fish and invertebrates. The role of these habitats as refuge from predation is well established, but the degree to which indigenous primary production within the nursery provides food for growth and development of estuarine species remains unresolved. In this study, we tested the hypothesis that juvenile blue crabs depend on indigenous primary production, directly or indirectly, during their entire stay within the nursery. To test this hypothesis, we conducted isotopic studies and stomach content analyses of juveniles from habitats near the mouth of Delaware Bay and from an adjacent lagoonal estuary (ca. 39.5° N, 75.1° W). Primary producers, marsh detritus, various life-history stages of blue crabs and potential prey species were sampled in the main estuary and in an adjacent marsh during the summer and early fall of two consecutive years. Newly settled juveniles (<15 mm carapace width) from the marsh were about 1.8‰ lighter in carbon (−17.2‰) relative to larger juveniles from the marsh (15–30 mm carapace width) and appeared to have retained a carbon isotopic signature indicative of the phytoplankton-based food web associated with larval stages. However, the signature of juveniles changed as a function of size. Large juveniles and crabs >60 mm were enriched in δ13C (−14.7 ± 0.1‰) compared to small crabs, suggesting a gradual shift in diet from a planktonic to a detritus-based food web with increasing size. As with crabs from Delaware Bay, the δ13C signature of juvenile crabs sampled from macroalgal beds in the lagoonal estuary (Rehoboth Bay) changed as a function of size. Also, δ13C ratios of crabs varied among the various species of macroalgae. The δ15N composition of primary producers in the marsh and main estuary also was reflected in the δ15N values of crabs and other benthic consumers in the respective habitats. Results of stomach-content analysis in this study were consistent with isotope data. Observed changes in prey preferences were related to changes in size of juvenile crabs and also differed among habitats. Gut content analyses of the three size classes of juveniles in macroalgal beds from Rehoboth Bay indicated that the crabs depend heavily on various amphipod species that occur on the seaweeds. These amphipods graze directly on the macroalgae and are among the most abundant invertebrates in the macroalgal beds. This implies a direct trophic relationship between the juvenile crabs and the macroalgae. In summary, our study provides strong evidence that the value of nursery areas such as salt marshes and macroalgal beds goes beyond that of providing refuge from predation, and that species using these nurseries (e.g. juvenile blue crabs) are ultimately dependent on primary production originating in benthic plants indigenous to the nursery.  相似文献   

6.
Commercial Atlantic blue crabs (Callinectes sapidus) were exposed to 2.0 × 104 infectious waterborne oocysts of Cryptosporidium parvum. The study demonstrated that blue crabs can transfer C. parvum oocysts to persons involved in handling or preparing crabs and that they may contaminate other surfaces or products during storage.  相似文献   

7.
Mud fiddler crabs, Uca pugnax, have a streak of blue coloration located on the front of the carapace above the mouth and centered between the eyes. We documented that this blue streak is absent in juveniles and develops as crabs become sexually mature. By photographing male crabs under controlled conditions in the laboratory, we demonstrated that the brightness of the blue streak (in comparison with the rest of the carapace) is dynamic, and can dim from bright blue to nearly black in fewer than two minutes. We examined blue streak variability in male crabs in response to physical factors (light and temperature) and social context to begin to understand what causes its dynamic response. The blue streak darkens in response to decreased ambient light, but does not respond to changes in temperature. In the field, it is brighter when crabs are roaming on the mudflat or fighting, but darker when crabs are basking or performing waving displays. The highly visual nature of fiddler crabs and the dynamic character of the blue streak suggest that it may communicate information about the state of a crab or its environment.  相似文献   

8.
A histological study of the reproductive cycle of male and female shore crabs, Carcinus maenas (Linnaeus), was performed monthly on the South West coast of Ireland (from December 2006 to July 2008). The calculated sex ratio deviated from equality, 1:0.53, revealing a strong male bias. A system was devised, based on screening of tissue sections, to describe and stage gametogenic development. Histological examinations revealed that ovarian development occurred biannually, with a primary winter cycle in which the larger crabs reproduced and a secondary summer cycle, when smaller crabs reproduced. An association was observed where more of the larger specimens were caught in the summer months and the smaller specimens in the winter months, which inversely correlated with the segregated breeding cycles. There was strong evidence that mature male crabs could potentially copulate year round since all mature specimens, collected throughout the year, contained viable spermatozoa. Developmental stages of oogenesis and spermatogenesis were described to develop a practical gonadal index for this portunid crab, providing information on the biology of this species, which will be of benefit for fisheries management.  相似文献   

9.
Outbreaks of an unidentified ciliate have occurred on several occasions in blue crabs from Chesapeake Bay held during winter months in flow-through systems. The parasite was initially thought to be Mesanophrys chesapeakensis, but molecular analysis identified it as Orchitophyra stellarum, a facultative parasite of sea stars (Asteroidea). We investigated the host-parasite association of O. stellarum in the blue crab host. Crabs were inoculated with the ciliate, or they were held in bath exposures after experimentally induced autotomy of limbs in order to determine potential mechanisms for infection. Crabs inoculated with the ciliate, or exposed to it after experimental autotomy, rapidly developed fatal infections. Crabs that were not experimentally injured, but were exposed to the ciliate, rarely developed infections; thus, indicating that the parasite requires a wound or break in the cuticle as a portal of entry. For comparative purposes, fiddler crabs, Uca minax, were inoculated with the ciliate in a dose-titration experiment. Low doses of the ciliate (10 per crab) were sometimes able to establish infections, but high intensity infections developed quickly at doses over 500 ciliates per crab. Chemotaxis studies were initiated to determine if the ciliate preferentially selected blue crab serum (BCS) over other nutrient sources. Cultures grown on medium with BCS or fetal bovine serum showed some conditioning in their selection for different media, but the outcome in choice experiments indicated that the ciliate was attracted to BCS and not seawater. Our findings indicate that O. stellarum is a facultative parasite of blue crabs. It can cause infections in exposed crabs at 10–15 °C, but it requires a portal of entry for successful host invasion, and it may find injured hosts using chemotaxis.  相似文献   

10.
Commercial Atlantic blue crabs (Callinectes sapidus) were exposed to 2.0x10(4) infectious waterborne oocysts of Cryptosporidium parvum. The study demonstrated that blue crabs can transfer C. parvum oocysts to persons involved in handling or preparing crabs and that they may contaminate other surfaces or products during storage.  相似文献   

11.
This is the first report of two North American branchiobdellidans, Sathodrilus attenuatus Holt, 1981, and Xironogiton victoriensis Gelder and Hall, 1990, on the signal crayfish, Pacifastacus leniusculus (Dana, 1852) introduced into Japan from the Columbia River system, northwestern North America. Signal crayfish from 12 localities in eastern and northern Hokkaido, Japan, were examined and each supported S. attenuatus. In addition, an individual of this species was found on preserved material from Ishikawa Prefecture, central Honshu. All of these branchiobdellidans reported in Hokkaido most probably came from the original population of signal crayfish introduced into Lake Mashu, Hokkaido, Japan, in 1930. It is suggested that the use of non-pathogenic branchiobdellidans, when present, provides an easy method for tracing the spread of crayfishes around Japan and could also be applied in other countries and continents. Specimens of X. victoriensis were only found on crayfish in a stream at Akashina in Nagano Prefecture, central Honshu, Japan. Although the signal crayfish appears to be displacing the endemic Japanese crayfish, C. japonicus, no native branchiobdellidans were found on any of the introduced signal crayfish examined.  相似文献   

12.
  • 1.1. The effects of seasonal variation on the carbohydrate and lipid metabolism of the Chasmagnathus granulata were investigated.
  • 2.2. Glycemia is high in winter and summer and low in spring and fall.
  • 3.3. The glycogen content in the hepatopancreas and muscle is higher in fall and winter, and decreases during spring and summer.
  • 4.4. The muscle lipids are higher in summer, and decrease during fall and winter whereas hepatopancreas lipids are higher except in the fall.
  • 5.5. The crabs show change in the metabolic pattern of lipids and carbohydrates during the seasons of the year.
  相似文献   

13.
An emerging body of literature points to post-settlement, planktonic dispersal as a key determinant of distribution and abundance patterns of aquatic organisms, yet little is known about mechanisms inducing such dispersal. Recent evidence suggests that early juvenile blue crabs (Callinectes sapidus Rathbun) may use planktonic emigration as a means of post-settlement dispersal. The goal of this study was to identify mechanisms inducing post-settlement, planktonic dispersal of early juvenile blue crabs. A combination of field mark-recapture experiments in large seagrass beds within a 2x3 km region near Oregon Inlet, North Carolina, USA, and a series of laboratory flume experiments examined the effects of day vs. night, crab size (first-second juvenile benthic instars: J1-J2 vs. third-fifth juvenile benthic instars: J3-J5), crab density and current speed on planktonic dispersal of early juvenile blue crabs. Transport of dead crabs in the flume experiment identified that planktonic dispersal was an active behavioral response rather than a passive response to increasing current speed. The experimental results demonstrated that planktonic dispersal can range from 4 to 18% under medium to high flow conditions. Planktonic dispersal of juvenile crabs is (1) an active behavioral response, (2) increased significantly with current speeds above 20 cms(-1), and (3) was higher for relatively large (J3-J5) than small (J1-J2) instars. There was a non-significant trend towards greater dispersal at night than during the day in the field experiment, and no effect of crab density on dispersal in the flume experiment. The results from this study highlight the need to consider mechanisms inducing post-settlement, planktonic dispersal when attempting to understand and predict recruitment and population dynamics of aquatic organisms, as well as when linking hydrodynamics, animal behavior and planktonic dispersal.  相似文献   

14.
A disease caused by a parasitic dinoflagellate of the genus Hematodinium was identified in red, Paralithodes camtschaticus, and blue, Paralithodes platypus, king crabs from the north-east region of the Sea of Okhotsk, Russia, during annual stock surveys. No carapace color change was observed even in heavily infected crabs, but diseased crabs possessed creamy-yellow hemolymph, which was visible through the arthrodial membranes of the abdomen and appendages. Several stages of the parasite’s life history, including trophonts, plasmodia, sporonts and macrodinospores, were observed in tissues of infected king crabs. Numerous parasite cells were observed in the lumina of the myocardium, the gills, the connective tissue of antennal glands and the sinuses of nerve ganglia, eyestalks and gastrointestinal tract of king crabs with gross signs of infection. Based on sequencing of the 18S rDNA, it appears that the Hematodinium sp. found in red and blue king crabs is identical or closely related to Hematodinium sp. isolated from crabs of the genera Chionoecetes and Lithodes. Observed prevalences were 0.33% in sublegal male red king crabs, 0.18% in female red king crabs, 0.34% in sublegal male blue king crabs and 0.31% in female blue king crabs.  相似文献   

15.
During the summer, groups of blue crabs, Callinectes sapidus, collected in commercial crab traps in Chincoteague Bay, Virginia, often undergo heavy mortalities during the first week to 10 days in the laboratory. Gram-negative bacteria are seen in hemolymph and tissues of many of the sick and dying crabs. The bacterial infections appear to be acquired during capture and transport, suggesting that potentially pathogenic bacteria in water or on the exoskeleton may be introduced into tissues by wounding or other means during the stressful conditions suffered at that time. The pathology caused by bacterial infection includes diminution in numbers of hemocytes, reduced clotting ability of the hemolymph, and progressive formation of hemocyte aggregations with necrotic centers in the heart, arteries, and hemal sinuses and spaces. By the third day, aggregations, often with many bacteria visible in the centers, occur especially in the gills, antennal gland, and Y organ. There are large premortem plasma clots in some animals. The focal and massive necroses that occur may be due to hypoxia resulting from obstruction of hemolymph flow by cellular aggregations and plasma clots and to toxic products of necrotic cells and/or bacteria.  相似文献   

16.
Population connectivity in the blue crab Callinectes sapidus was evaluated along 740 km of the Western South Atlantic coast. Blue crabs are the most exploited portunid in Brazil. Despite their economic importance, few studies report their ecology or population structure. Here we sampled four estuarine areas in southern Brazil during winter 2013 and summer 2014 in order to evaluate diversity, gene flow and structure of these populations. Nine microsatellite markers were evaluated for 213 adult crabs, with identification of seven polymorphic loci and 183 alleles. Pairwise FST values indicated low population structure ranging from -0.00023 to 0.01755. A Mantel test revealed that the geographic distance does not influence genetic (r = -0.48), and structure/migration rates confirmed this, showing that even the populations located at the opposite extremities of our covered region presented low FST and exchanged migrants. These findings show that there is a significant amount of gene flow between blue crab populations in South Brazil, likely influenced by local current dynamics that allow the transport of a high number of larvae between estuaries. Considering the elevated gene flow, the populations can be considered a single genetic stock. However, further information on population size and dynamics, as well as fishery demands and impacts at different regions, are necessary for harvest management purposes.  相似文献   

17.
To investigate the phylogenetic relationships of leeches, branchiobdellidans, and acanthobdellidans, whole nuclear 18S rDNA and over 650 bp of mitochondrial cytochrome c oxidase subunit I were acquired from 101 annelids, including 36 leeches, 18 branchiobdellidans, Acanthobdella peledina, as well as 28 oligochaetes and combined with homologous data for 17 polychaete outgroup taxa. Parsimony analysis of the combined aligned dataset supported monophyly of leeches, branchiobdellidans, and acanthobdellidans in 100% of jackknife replicates. Monophyly of the oligochaete order Lumbriculida with Acanthobdellida, Branchiobdellida, and Hirudinea was supported in 84% of jackknife replicates. These results provide support for the hypotheses that leeches and branchiobdellidans are sister groups, that acanthobdellidans are sister to them, and that together with the family Lumbriculidae they all constitute a clade within Oligochaeta. Results support synonymy of the classes Clitellata and the more commonly used Oligochaeta. Leeches branchiobdellidans, and acanthobdellidans should be regarded as orders equal to their closest relatives, the order Lumbriculida.  相似文献   

18.
Predators play an important role in structuring assemblages through direct and cascading indirect effects. While there has been recent interest in how the strength and direction of trophic cascades vary spatially, seasonal variability in trophic links is seldom considered. In North Carolina, recruitment-failure of bay scallops typically occurs following the spring but not the fall spawning despite the presence in each of these seasons of predatory blue crabs. One explanation for this pattern is that in the fall, seasonally abundant predators of blue crabs reduce the foraging efficiency of crabs on scallops and thus the overall magnitude of top-down effects. Quantification of bay scallop consumption by blue crabs in closed mesocosms with or without pinfish supported the hypothesis that seasonally abundant adult pinfish indirectly increase survivorship of bay scallop recruits in fall by reducing predation by blue crabs. Despite voracious consumption of bay scallops during both the day and night in mesocosms to which only small blue crabs were added, blue crabs in mesocosms with visually-foraging adult pinfish consumed bay scallops only by night. Juvenile pinfish that dominate estuarine populations in spring did not impede consumption of bay scallops by blue crabs. In mesocosms from which animals could not emigrate, the addition of neither adult nor juvenile pinfish increased the mortality of blue crabs, indicating a behaviorally mediated interaction. Blue crabs restricted by adult pinfish to nocturnal feeding did not compensate for lost feeding time by increasing their night-time consumption of bay scallops. These results strongly suggest that greater survivorship of bay scallops in fall than spring is due to adult pinfish, potential predators of small blue crabs, restricting blue crab foraging to hours of dark. In spring, when pinfish are small and incapable of consuming blue crabs, blue crabs consume bay scallops by day and by night. Such seasonal variation in the number of trophic links in a system may have important evolutionary implications. By timing reproduction to occur in fall when the pinfish-crab-scallop cascade is in operation, bay scallops maximize recruitment.  相似文献   

19.
The blue crab (Callinectes sapidus) is native to the western Atlantic, but is an invasive species in the Mediterranean. This study examined the dynamics of growth in an invasive population of blue crab in the Yumurtal?k Cove, Turkey (North Eastern Mediterranean). Growth was quantified using a discontinuous growth model, a molt process model. Crab growth histories were observed for individual crabs held in field enclosures in summer 2010 and 2011. Carapace widths ranged from 14.13 to 80.07 mm. A mean growth per molt of 120.6% increase in carapace width was observed. Chronological inter-molt periods ranging between 3 days and 67 days were observed. The average IMP was 16 days in Yumurtal?k Cove. The mean physiological IMP was 270±163 degree-days, ranging from 72–781 degree-days.  相似文献   

20.
The causes of the appearance of large blue king crabs (Paralithodes platypus) in Peter the Great Bay for the last decade are discussed. This species is an important commercial resource in the waters of Russian Far Eastern seas, and its general concentrations are related mainly to the sublittoral and upper bathyal zones of the northwestern Bering Sea and the northern Sea of Okhotsk. Until recently, this species has been observed in areas along the continental coast of the northwestern Sea of Japan up to the Peter the Great Bay, where it incidentally showed up in red king crab (P. camtschaticus) and snow crab (Chionoecetes opilio) catches but was also commercially used. This area was considered as the southern periphery of the species range. Since the late 1990s, both male and female blue king crabs have been recorded in trawl and trap catches during research works conducted within the Peter the Great Bay. Since 2002, any commercial catches of shelf crab species are prohibited in the waters south of 47°20′ N because of a dramatic decline in their populations. Since then all the illegally caught crabs, including blue king crabs that are seized live from poachers, are released back into the water in certain places of the bay. In total, at least 29 503 blue king crabs, including egg-bearing females, were released within the period from 2002 to November 2009. At present, the overall blue king crab abundance in Peter the Great Bay, estimated based on the trap catches over an area of 7048 km2, is 50500, the abundance of commercial-size males (with a carapace width over 130 mm) is 7500, and the male to female ratio is 1.00: 1.35. The increase in the blue king crab population observed in the bay is the result of the immigration of mature and viable individuals from other areas of its range. After this “uncontrolled introduction” blue king crabs adapted to new conditions, and then began breeding and spreading over the entire area of the bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号