首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Kinetic mechanism of the EcoRI DNA methyltransferase   总被引:4,自引:0,他引:4  
N O Reich  N Mashhoon 《Biochemistry》1991,30(11):2933-2939
We present a kinetic analysis of the EcoRI DNA N6-adenosine methyltransferase (Mtase). The enzyme catalyzes the S-adenosylmethionine (AdoMet)-dependent methylation of a short, synthetic 14 base pair DNA substrate and plasmid pBR322 DNA substrate with kcat/Km values of 0.51 X 10(8) and 4.1 X 10(8) s-1 M-1, respectively. The Mtase is thus one of the most efficient biocatalysts known. Our data are consistent with an ordered bi-bi steady-state mechanism in which AdoMet binds first, followed by DNA addition. One of the reaction products, S-adenosylhomocysteine (AdoHcy), is an uncompetitive inhibitor with respect to DNA and a competitive inhibitor with respect to AdoMet. Thus, initial DNA binding followed by AdoHcy binding leads to formation of a ternary dead-end complex (Mtase-DNA-AdoHcy). We suggest that the product inhibition patterns and apparent order of substrate binding can be reconciled by a mechanism in which the Mtase binds AdoMet and noncanonical DNA randomly but that recognition of the canonical site requires AdoMet to be bound. Pre-steady-state and isotope partition analyses starting with the binary Mtase-AdoMet complex confirm its catalytic competence. Moreover, the methyl transfer step is at least 10 times faster than catalytic turnover.  相似文献   

2.
Kinetic and catalytic mechanism of HhaI methyltransferase   总被引:53,自引:0,他引:53  
Kinetic and catalytic properties of the DNA (cytosine-5)-methyltransferase HhaI are described. With poly(dG-dC) as substrate, the reaction proceeds by an equilibrium (or processive) ordered Bi-Bi mechanism in which DNA binds to the enzyme first, followed by S-adenosylmethionine (AdoMet). After methyl transfer, S-adenosylhomocysteine (AdoHcy) dissociates followed by methylated DNA. AdoHcy is a potent competitive inhibitor with respect to AdoMet (Ki = 2.0 microM) and its generation during reactions results in non-linear kinetics. AdoMet and AdoHcy significantly interact with only the substrate enzyme-DNA complex; they do not bind to free enzyme and bind poorly to the methylated enzyme-DNA complex. In the absence of AdoMet, HhaI methylase catalyzes exchange of the 5-H of substrate cytosines for protons of water at about 7-fold the rate of methylation. The 5-H exchange reaction is inhibited by AdoMet or AdoHcy. In the enzyme-DNA-AdoHcy complex, AdoHcy also suppresses dissociation of DNA and reassociation of the enzyme with other substrate sequences. Our studies reveal that the catalytic mechanism of DNA (cytosine-5)-methyltransferases involves attack of the C6 of substrate cytosines by an enzyme nucleophile and formation of a transient covalent adduct. Based on precedents of other enzymes which catalyze similar reactions and the susceptibility of HhaI to inactivation by N-ethylmaleimide, we propose that the sulfhydryl group of a cysteine residue is the nucleophilic catalyst. Furthermore, we propose that Cys-81 is the active-site catalyst in HhaI. This residue is found in a Pro-Cys doublet which is conserved in all DNA (cytosine-5)-methyltransferases whose sequences have been determined to date and is found in related enzymes. Finally, we discuss the possibility that covalent adducts between C6 of pyrimidines and nucleophiles of proteins may be important general components of protein-nucleic acid interactions.  相似文献   

3.
Cloned soybean sterol methyltransferase was purified from Escherichia coli to gel electrophoretic homogeneity. From initial velocity experiments, catalytic constants for substrates best suited for the first and second C1 transfer activities, cycloartenol and 24(28)-methylenelophenol, were 0.01 and 0.001 s-1, respectively. Two-substrate kinetic analysis using cycloartenol and S-adenosyl-l-methionine (AdoMet) generated an intersecting line pattern characteristic of a ternary complex kinetic mechanism. The high energy intermediate analog 25-azacycloartanol was a noncompetitive inhibitor versus cycloartenol and an uncompetitive inhibitor versus AdoMet. The dead end inhibitor analog cyclolaudenol was competitive versus cycloartenol and uncompetitive versus AdoMet. 24(28)-Methylenecycloartanol and AdoHcy generated competitive and noncompetitive kinetic patterns, respectively, with respect to AdoMet. Therefore, 24(28)-methylenecycloartanol combines with the same enzyme form as does cycloartenol and must be released from the enzyme before AdoHcy. 25-Azacycloartanol inhibited the first and second C1 transfer activities with about equal efficacy (Ki = 45 nm), suggesting that the successive C-methylation of the Delta 24 bond occurs at the same active center. Comparison of the initial velocity data using AdoMet versus [2H3-methyl]AdoMet as substrates tested against saturating amounts of cycloartenol indicated an isotope effect on VCH3/VCD3 close to unity. [25-2H]24(28)-Methylenecycloartanol, [28E-2H]24 (28)-methylenelanosterol, and [28Z-2H]24(28)-methylene lanosterol were prepared and paired with AdoMet or [methyl-3H3]AdoMet to examine the kinetic isotope effects attending the C-28 deprotonation in the enzymatic synthesis of 24-ethyl(idene) sterols. The stereochemical features as well as the observation of isotopically sensitive branching during the second C-methylation suggests that the two methylation steps can proceed by a change in chemical mechanism resulting from differences in sterol structure, concerted versus carbocation; the kinetic mechanism remains the same during the consecutive methylation of the Delta 24 bond.  相似文献   

4.
Inhibition of EcoRI DNA methylase with cofactor analogs   总被引:5,自引:0,他引:5  
Four analogs of the natural cofactor S-adenosylmethionine (AdoMet) were tested for their ability to bind and inhibit the prokaryotic enzyme, EcoRI adenine DNA methylase. The EcoRI methylase transfers the methyl group from AdoMet to the second adenine in the double-stranded DNA sequence 5'GAATTC3'. Dissociation constants (KD) of the binary methylase-analog complexes obtained in the absence of DNA with S-adenosylhomocysteine (AdoHcy), sinefungin, N-methyl-AdoMet, and N-ethylAdoMet are 225, 43, greater than 1000, and greater than 1000 microM, respectively. In the presence of a DNA substrate, all four analogs show simple competitive inhibition with respect to AdoMet. The product of the enzymic reaction, AdoHcy, is a poor inhibitor of the enzyme (KI(AdoHcy) = 9 microM; KM(AdoMet) = 0.60 microM). Two synthetic analogs, N-methyl-AdoMet and N-ethyl-AdoMet, were also shown to be poor inhibitors with KI values of 50 and greater than 1000 microM, respectively. In contrast, the naturally occurring analog sinefungin was shown to be a highly potent inhibitor (KI = 10 nM). Gel retardation assays confirm that the methylase-DNA-sinefungin complex is sequence-specific. The ternary complex is the first sequence-specific complex detected for any DNA methylase. Potential applications to structural studies of methylase-DNA interactions are discussed.  相似文献   

5.
Lysine-specific murine histone H3 methyltransferase, G9a, was expressed and purified in a baculovirus expression system. The primary structure of the recombinant enzyme is identical to the native enzyme. Enzymatic activity was favorable at alkaline conditions (>pH 8) and low salt concentration and virtually unchanged between 25 and 42 degrees C. Purified G9a was used for substrate specificity and steady-state kinetic analysis with peptides representing un- or dimethylated lysine 9 histone H3 tails with native lysine 4 or with lysine 4 changed to alanine (K4AK9). In vitro methylation of the H3 tail peptide resulted in trimethylation of Lys-9 and the reaction is processive. The turnover number (k(cat)) for methylation was 88 and 32 h(-1) on the wild type and K4AK9 histone H3 tail, respectively. The Michaelis constants for wild type and K4AK9 ((K(m)(pep))) were 0.9 and 1.0 microM and for S-adenosyl-L-methionine (K(m)(AdoMet)) were 1.8 and 0.6 microM, respectively. Comparable kinetic constants were obtained for recombinant histone H3. The conversion of K4AK9 di- to trimethyl-lysine was 7-fold slower than methyl group addition to unmethylated peptide. Preincubation studies showed that G9a-AdoMet and G9a-peptide complexes are catalytically active. Initial velocity data with peptide and S-adenosyl-L-methionine (AdoMet) and product inhibition studies with S-adenosyl-L-homocysteine were performed to assess the kinetic mechanism of the reaction. Double reciprocal plots and preincubation studies revealed S-adenosyl-L-homocysteine as a competitive inhibitor to AdoMet and mixed inhibitor to peptide. Trimethylated peptides acted as a competitive inhibitor to substrate peptide and mixed inhibitor to AdoMet suggesting a random mechanism in a Bi Bi reaction for recombinant G9a where either substrate can bind first to the enzyme, and either product can release first.  相似文献   

6.
The structures of RsrI DNA methyltransferase (M.RsrI) bound to the substrate S-adenosyl-l-methionine (AdoMet), the product S-adenosyl-l-homocysteine (AdoHcy), the inhibitor sinefungin, as well as a mutant apo-enzyme have been determined by x-ray crystallography. Two distinct binding configurations were observed for the three ligands. The substrate AdoMet adopts a bent shape that directs the activated methyl group toward the active site near the catalytic DPPY motif. The product AdoHcy and the competitive inhibitor sinefungin bind with a straight conformation in which the amino acid moiety occupies a position near the activated methyl group in the AdoMet complex. Analysis of ligand binding in comparison with other DNA methyltransferases reveals a small, common subset of available conformations for the ligand. The structures of M.RsrI with the non-substrate ligands contained a bound chloride ion in the AdoMet carboxylate-binding pocket, explaining its inhibition by chloride salts. The L72P mutant of M.RsrI is the first DNA methyltransferase structure without bound ligand. With respect to the wild-type protein, it had a larger ligand-binding pocket and displayed movement of a loop (223-227) that is responsible for binding the ligand, which may account for the weaker affinity of the L72P mutant for AdoMet. These studies show the subtle changes in the tight specific interactions of substrate, product, and an inhibitor with M.RsrI and help explain how each displays its unique effect on the activity of the enzyme.  相似文献   

7.
The successive methylations of phosphatidylethanolamine to form phosphatidylcholine were measured using exogenously added intermediates and membrane preparations from human red blood cells. The addition of phosphatidylethanolamine resulted in no increase in methylation rate over that with endogenous substrate; however, the addition of monomethylphosphatidylethanolamine (PME) and dimethylphosphatidylethanolamine (PDE) markedly increased the reaction rate and allowed studies into the kinetic mechanism for the second and third methylation reactions. The data are consistent with catalysis of the last two methylations being by a single enzyme with a random Bi-Bi sequential mechanism. Analysis of PDE:phosphatidylcholine product ratios indicates that the enzyme can conduct multiple methylations of enzyme-bound phospholipid. The nature of the acyl chain (16:0 versus 18:1) of the phospholipid had only a small effect on the value of the kinetic constants. The maximal velocities obtained with the 18:1 substrate were less than 5% lower than those obtained with the 16:0 substrate. The Km values for the two phospholipids were 20-45 and 10-14 microM for the methylation of PME and PDE, respectively. The Km for S-adenosylmethionine (AdoMet) was 5-9 microM with PME and 4 microM with PDE as substrates. Depending on the acyl chain and the phospholipid, the Ki(AdoMet) varied from 8 to 19 microM, the Ki(PME) from 41 to 82 microM, and the Ki(PDE) from 35 to 61 microM. The Ki for S-adenosylhomocysteine (AdoHcy) was between 1.0 and 1.4 microM depending upon the variable substrate. The endogenous concentrations of PME and PDE in red blood cell membranes were estimated to be 0.49 and 0.24 mumol/liter packed cells, respectively. The product from the utilization of AdoMet, S-adenosylhomocysteine (AdoHcy), was shown to be a competitive inhibitor of its precursor, AdoMet, and a noncompetitive inhibitor of the two phospholipid substrates.  相似文献   

8.
KpnI DNA-(N(6)-adenine)-methyltransferase (KpnI MTase) is a member of a restriction-modification (R-M) system in Klebsiella pneumoniae and recognizes the sequence 5'-GGTACC-3'. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine (AdoMet) to the N(6) position of adenine residue. KpnI MTase occurs as a dimer in solution as shown by gel filtration and chemical cross-linking analysis. The nonlinear dependence of methylation activity on enzyme concentration indicates that the functionally active form of the enzyme is also a dimer. Product inhibition studies with KpnI MTase showed that S-adenosyl-l-homocysteine is a competitive inhibitor with respect to AdoMet and noncompetitive inhibitor with respect to DNA. The methylated DNA showed noncompetitive inhibition with respect to both DNA and AdoMet. A reduction in the rate of methylation was observed at high concentrations of duplex DNA. The kinetic analysis where AdoMet binds first followed by DNA, supports an ordered bi bi mechanism. After methyl transfer, methylated DNA dissociates followed by S-adenosyl-l-homocysteine. Isotope-partitioning analysis showed that KpnI MTase-AdoMet complex is catalytically active.  相似文献   

9.
A kinetic analysis of MspI DNA methyltransferase (M.MspI) is presented. The enzyme catalyzes methylation of lambda-DNA, a 50-kilobase pair linear molecule with multiple M.MspI-specific sites, with a specificity constant (kcat/KM) of 0.9 x 10(8) M-1 s-1. But the values of the specificity constants for the smaller DNA substrates (121 and 1459 base pairs (bp)) with single methylation target or with multiple targets (sonicated lambda-DNA) were less by an order of magnitude. Product inhibition of the M.MspI-catalyzed methylation reaction by methylated DNA is competitive with respect to DNA and noncompetitive with respect to S-adenosylmethionine (AdoMet). The S-adenosylhomocysteine inhibition of the methylation reaction is competitive with respect to AdoMet and uncompetitive with respect to DNA. The presteady state kinetic analysis showed a burst of product formation when AdoMet was added to the enzyme preincubated with the substrate DNA. The burst is followed by a constant rate of product formation (0.06 mol per mol of enzyme s-1) which is similar to catalytic constants (kcat = approximately 0.056 s-1) measured under steady state conditions. The isotope exchange in chasing the labeled methyltransferase-DNA complex with unlabeled DNA and AdoMet leads to a reduced burst as compared with the one involving chase with labeled DNA and AdoMet. The enzyme is capable of exchanging tritium at C-5 of target cytosine in the substrate DNA in the absence of cofactor AdoMet. The kinetic data are consistent with an ordered Bi Bi mechanism for the M.MspI-catalyzed DNA methylation where DNA binds first.  相似文献   

10.
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.  相似文献   

11.
Kinetic parameters of the selenium-containing, formate dehydrogenase component of the Escherichia coli formate-hydrogenlyase complex have been determined with purified enzyme. A ping-pong Bi Bi kinetic mechanism was observed. The Km for formate is 26 mM, and the Km for the electron-accepting dye, benzyl viologen, is in the range 1-5 mM. The maximal turnover rate for the formate-dependent catalysis of benzyl viologen reduction was calculated to be 1.7 x 10(5) min-1. Isotope exchange analysis showed that the enzyme catalyzes carbon exchange between carbon dioxide and formate in the absence of other electron acceptors, confirming the ping-pong reaction mechanism. Dissociation constants for formate (12.2 mM) and CO2 (8.3 mM) were derived from analysis of the isotope exchange data. The enzyme catalyzes oxidation of the alternative substrate deuterioformate with little change in the Vmax, but the Km for deuterioformate is approximately three times that of protioformate. This implies formate oxidation is not rate-limiting in the overall coupled reaction of formate oxidation and benzyl viologen reduction. The deuterium isotope effect on Vmax/Km was observed to be approximately 4.2-4.5. Sodium nitrate was found to inhibit enzyme activity in a competitive manner with respect to formate, with a Ki of 7.1 mM. Sodium azide is a noncompetitive inhibitor with a Ki of about 80 microM.  相似文献   

12.
The kinetic properties for the native forward reaction of pyruvate:NADP+ oxidoreductase from Euglena gracilis were determined. The substrate kinetics gave a pattern of a ping-pong mechanism involving a competitive substrate inhibition of CoA against pyruvate. The Km values for pyruvate, CoA, and NADP+ were estimated to be 27, 6.6, and 28 microM, respectively, and the Ki value of CoA against pyruvate was 28 microM. CO2 inhibited noncompetitively against pyruvate and NADP+, and uncompetitively against CoA. Acetyl-CoA showed a competitive inhibition with respect to pyruvate and an uncompetitive inhibition with respect to NADP+. NADPH inhibited competitively versus NADP+, noncompetitively versus CoA, and uncompetitively versus pyruvate. The kinetic behavior is consistent with a two-site ping-pong mechanism involving the substrate inhibition. From the kinetic mechanism, it is proposed that the enzyme has two catalytic sites linked by an intramolecular electron-transport chain. One of these is a thiamine pyrophosphate-containing catalytic site which reacts with pyruvate and CoA to form CO2 and acetyl-CoA, and the other site functions in the reduction of NADP+. In contrast, when methyl viologen was used as an artificial one-electron acceptor substituting for NADP+, the reaction gave a pattern characteristic of an octa uni ping-pong mechanism involving a competitive substrate inhibition of CoA against pyruvate.  相似文献   

13.
Initial rate kinetic studies with bovine liver fructose-1,6-bisphosphatase were carried out in both directions of the reaction to determine the sequence of product release from the enzyme. Product inhibition by fructose-6-P was found to be S-linear, I-linear noncompetitive relative to fructose-1,6-bisphosphate, whereas inorganic orthophosphate was determined to be linear competitive with respect to the substrate. The kinetics of the reverse reaction were studied by coupling the phosphatase reaction to the aldolase, triosephosphate isomerase, and glycerolphosphate dehydrogenase reactions. The kinetic results were found to be in harmony with the Uni Bi ordered and random sequential mechanisms as well as a Uni Bi ping-pong mechanism. The nomenclature is that of Cleland (Cleland, W.W. (1963) Biochim. Biophys. Acta 67, 104-137). However, nonkinetic considerations, when taken together with the kinetic results, suggest that the steady state ordered Uni Bi mechanism is the most likely possibility. There is evidence that isomerization of the binary complex of enzyme and phosphate occurs in the kinetic mechanism. Although magnesium is required for the reverse reaction, there is no evidence to suggest that the enzyme discriminates between the magnesium-associated or divalent cation-free forms of the substrates.  相似文献   

14.
We studied the kinetics of methyl group transfer by the BamHI DNA-(cytosine-N(4)-)-methyltransferase (MTase) from Bacillus amyloliquefaciens to a 20-mer oligodeoxynucleotide duplex containing the palindromic recognition site GGATCC. Under steady state conditions the BamHI MTase displayed a simple kinetic behavior toward the 20-mer duplex. There was no apparent substrate inhibition at concentrations much higher than the K(m) for either DNA (100-fold higher) or S-adenosyl-l-methionine (AdoMet) (20-fold higher); this indicates that dead-end complexes did not form in the course of the methylation reaction. The DNA methylation rate was analyzed as a function of both substrate and product concentrations. It was found to exhibit product inhibition patterns consistent with a steady state random bi-bi mechanism in which the dominant order of substrate binding and product release (methylated DNA, DNA(Me), and S-adenosyl-l-homocysteine, AdoHcy) was Ado-Met DNA DNA(Me) AdoHcy. The M.BamHI kinetic scheme was compared with that for the T4 Dam (adenine-N(6)-)-MTase. The two differed with respect to an effector action of substrates and in the rate-limiting step of the reaction (product inhibition patterns are the same for the both MTases). From this we conclude that the common chemical step in the methylation reaction, methyl transfer from AdoMet to a free exocyclic amino group, is not sufficient to dictate a common kinetic scheme even though both MTases follow the same reaction route.  相似文献   

15.
16.
A high-throughput, competitive fluorescence polarization immunoassay has been developed for the detection of methyltransferase activity. The assay was designed to detect S-adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and fluorescein-AdoHcy conjugate tracer to measure AdoHcy generated as a result of methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The release of tracer results in a decrease in fluorescence polarization. Under optimized conditions, AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 microM AdoMet. The limit of detection was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 muM AdoMet. To validate the assay's ability to quantitate methyltransferase activity, the methyltransferase catechol-O-methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence polarization was observed in the COMT assay that was developed. The IC(50) value obtained using a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase activity.  相似文献   

17.
We have analyzed the level of substrate (AdoMet) and products (AdoHcy) of transmethylations throughout the developmental cycle of the primitive eukaryote Dictyostelium discoideum. The ratio AdoMet/AdoHcy varied dramatically during differentiation. The intracellular level of AdoHcy decreased sharply after the beginning of starvation reaching a value of 18% of that in vegative cells within 4 h. In contrast, there was a two-fold transient increase in AdoMet at the time of aggregation. However, these changes were not related to changes in AdoHcy hydrolase since constant levels of both the protein and the activity were found until 16 h of differentiation. In particular, there was no indication of an in vivo inactivation of the enzyme by cAMP at the time of aggregation. These results are discussed with respect to the previously postulated role of AdoHcy hydrolase in the regulation of the AdoMet/AdoHcy ratio in eukaryotic cells.  相似文献   

18.
Zhang X  Bruice TC 《Biochemistry》2007,46(34):9743-9751
There are three reaction steps in the S-adenosylmethionine (AdoMet) methylation of lysine-NH2 catalyzed by a methyltransferase. They are (i) combination of enzyme.Lys-NH3+ with AdoMet, (ii) substrate ionization to provide enzyme.AdoMet.Lys-NH2, and (iii) methyl transfer providing enzyme.AdoHcy.Lys-N(Me)H2+ and the dissociation of AdoHcy. In this study of the viral histone methyltransferase (vSET), we find that substrate ionization of vSET.Lys27-NH3+, vSET.Lys27-N(Me)H2+, and vSET.Lys27-N(Me)2H+ takes place upon combination with AdoMet. The presence of a water channel allows dissociation of a proton to the solvent. There is no water channel in the absence of AdoMet. That the formation of a water channel is combined with AdoMet binding was first discovered in our investigation of Rubisco large subunit methyltransferase. Via a quantum mechanics/molecular mechanics (QM/MM) approach, the calculated free energy barrier (DeltaG++) of the first methyl transfer reaction catalyzed by vSET [Lys27-NH2 + AdoMet --> Lys27-N(Me)H2+ + AdoHcy] equals 22.5 +/- 4.3 kcal/mol, which is in excellent agreement with the free energy barrier (21.7 kcal/mol) calculated from the experimental rate constant (0.047 min-1). The calculated DeltaG++ of the second methyl transfer reaction [AdoMet + Lys27-N(Me)H --> AdoHcy + Lys27-N(Me)2H+] at the QM/MM level is 22.6 +/- 3.6 kcal/mol, which is in agreement with the value of 22.4 kcal/mol determined from the experimental rate constant (0.015 min-1). The third methylation [Lys27-N(Me)2 + AdoMet --> Lys27-N(Me)3+ + AdoHcy] is associated with a DeltaG++ of 23.1 +/- 4.0 kcal/mol, which is in agreement with the value of 23.0 kcal/mol determined from the experimental rate constant (0.005 min-1). Our computations establish that the first, second, and third methyl transfer steps catalyzed by vSET are linear SN2 reactions with the bond making being approximately 50% associative.  相似文献   

19.
Isoprenylcysteine carboxyl methyltransferase (Icmt) catalyzes the methylation of the C-terminal prenylcysteine found on prenylated proteins. Numerous studies have shown that the methylation step is important for the correct localization and function of many prenylated proteins, most notably GTPases in the Ras superfamily. We recently reported identification of a small molecule derived from an indole core as a potent, cell-active inhibitor of Icmt whose potency was increased upon preincubation with the enzyme [Winter-Vann, A. M., Baron, R. A., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102 (12), 4336-41]. In the study presented here, we performed a kinetic characterization of this time-dependent inhibition of Icmt by 2-[5-(3-methylphenyl)-1-octyl-1H-indol-3-yl]acetamide (cysmethynil). These analyses revealed that cysmethynil is a competitive inhibitor with respect to the isoprenylated cysteine substrate and a noncompetitive inhibitor with respect to AdoMet, the methyl donor in the reaction. The Ki of cysmethynil for Icmt, which represents the dissociation constant of the initial complex with the enzyme, was 2.39 +/- 0.02 microM, and the Ki*, which is the overall dissociation constant of the inhibitor for the final complex, was 0.14 +/- 0.01 microM. The first-order rate constant for the conversion of the initial enzyme-inhibitor complex to the final high-affinity complex was 0.87 +/- 0.06 min-1, and that for the reverse process was 0.053 +/- 0.003 min-1; the latter rate constant corresponds to a half-life for the high-affinity complex of 15 min. Structure-activity relationships of a number of closely related indole compounds revealed that the hydrophobicity of the substituent on the nitrogen of the indole core was responsible for the manifestation of time-dependent inhibition. These findings markedly enhance our understanding of the mechanism of inhibition of Icmt by this indole class of compounds and should facilitate ongoing efforts to assess the potential of targeting this enzyme in anticancer drug design.  相似文献   

20.
The methyltransferase enzyme (MTase), which catalyzes the transfer of a methyl group from S-adenosyl-methionine (AdoMet) to viral RNA, and generates S-adenosyl-homocysteine (AdoHcy) as a by-product, is essential for the life cycle of many significant human pathogen flaviviruses. Here we investigated inhibition of the flavivirus MTase by several AdoHcy-derivatives. Unexpectedly we found that AdoHcy itself barely inhibits the flavivirus MTase activities, even at high concentrations. AdoHcy was also shown to not inhibit virus growth in cell-culture. Binding studies confirmed that AdoHcy has a much lower binding affinity for the MTase than either the AdoMet co-factor, or the natural AdoMet analog inhibitor sinefungin (SIN). While AdoMet is a positively charged molecule, SIN is similar to AdoHcy in being uncharged, and only has an additional amine group that can make extra electrostatic contacts with the MTase. Molecular Mechanics Poisson-Boltzmann Sovation Area analysis on AdoHcy and SIN binding to the MTase suggests that the stronger binding of SIN may not be directly due to interactions of this amine group, but due to distributed differences in SIN binding resulting from its presence. The results suggest that better MTase inhibitors could be designed by using SIN as a scaffold rather than AdoHcy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号