首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) requires the activation of Rac1, implicating this protein as an important subunit of the NADPH oxidase complex. Our results, using a geranylgeranyl transferase inhibitor (GGTI-287), demonstrated a dose-dependent inhibition of Rac1 activity and ROS production. This was associated with an inhibition of PASMC proliferation with an arrest at G(2)/M. The inhibition of Rac1 by GGTI-287 led us to more specifically target Rac1 to investigate its role in the generation of ROS and cellular proliferation. To accomplish this, we utilized a dominant negative Rac1 (N17Rac1) and a constitutively active Rac1 (V12Rac1). These two forms of Rac1 were transiently expressed in PASMCs using adenovirus-mediated gene transfer. N17Rac1 expression resulted in decreased cellular Rac1 activity, whereas V12Rac1 infection showed increased activity. Compared with controls, the V12Rac1-expressing cells had higher levels of ROS production and increased proliferation, whereas the N17Rac1-expressing cells had decreased ROS generation and proliferation and cell cycle arrest at G(2)/M. However, the inhibition of cell growth produced by N17Rac1 overexpression could be overcome if cells were co-incubated with the Cu,Zn superoxide dismutase inhibitor DETC. These results indicate the importance of Rac1 in ROS generation and proliferation of vascular smooth muscle cells.  相似文献   

2.
3.
Neutrophil homeostasis is essential for host defense. Here we identify dual roles for Rac2 during neutrophil homeostasis using a zebrafish model of primary immune deficiency induced by the human inhibitory Rac2D57N mutation in neutrophils. Noninvasive live imaging of Rac2 morphants or Rac2D57N zebrafish larvae demonstrates an essential role for Rac2 in regulating 3D motility and the polarization of F-actin dynamics and PI(3)K signaling in?vivo. Tracking of photolabeled Rac2-deficient neutrophils from hematopoietic tissue also shows increased mobilization into the circulation, indicating that neutrophil mobilization does not require traditionally defined cell motility. Moreover, excessive neutrophil retention in hematopoietic tissue resulting from a constitutively active CXCR4 mutation in zebrafish warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is partially rescued by the inhibitory Rac2 mutation. These findings reveal that Rac2 signaling is necessary for both neutrophil 3D motility and CXCR4-mediated neutrophil retention in hematopoietic tissue, thereby limiting neutrophil mobilization, a critical first step in the innate immune response.  相似文献   

4.
Vav is a guanine nucleotide exchange factor for the Rho/Rac family predominantly expressed in hematopoietic cells and implicated in cell proliferation and cytoskeletal organization. The oncogenic tyrosine kinase Bcr-Abl has been shown to activate Rac-1, which is important for Bcr-Abl induced leukemogenesis. Previous studies by Matsuguchi et al. (Matsuguchi, T., Inhorn, R. C., Carlesso, N., Xu, G., Druker, B., and Griffin, J. D. (1995) EMBO J. 14, 257-265) describe enhanced phosphorylation of Vav in Bcr-Abl-expressing Mo7e cells yet fail to demonstrate association of the two proteins. Here, we report the identification of a direct complex between Vav and Bcr-Abl in yeast, in vitro and in vivo. Furthermore, we show tyrosine phosphorylation of Vav by Bcr-Abl. Mutational analysis revealed that the SH2 domain and the C-terminal SH3 domain as well as a tetraproline motif directly adjacent to the N-terminal SH3 domain of Vav are important for establishing this phosphotyrosine dependent interaction. Activation of Rac-1 by Bcr-Abl was abrogated by co-expression of the Vav C terminus encoding the SH3-SH2-SH3 domains as a dominant negative construct. Bcr-Abl transduced primary bone marrow from Vav knock-out mice showed reduced proliferation in a culture cell transformation assay compared with wild-type bone marrow. These results suggest, that Bcr-Abl utilizes Vav as a guanine nucleotide exchange factor to activate Rac-1 in a process that involves a folding mechanism of the Vav C terminus. Given the importance of Rac-1 activation for Bcr-Abl-mediated leukemogenesis, this mechanism may be crucial for the molecular pathogenesis of chronic myeloid leukemia and of importance for other signal transduction pathways leading to the activation of Rac-1.  相似文献   

5.
The bacterial enteropathogen Salmonella typhimurium employs a specialized type III secretion system to inject toxins into host cells, which trigger signaling cascades leading to cell death in macrophages, secretion of pro-inflammatory cytokines, or rearrangements of the host cell cytoskeleton and thus to bacterial invasion. Two of the injected toxins, SopE and the 69% identical protein SopE2, are highly efficient guanine nucleotide exchange factors for the RhoGTPase Cdc42 of the host cell. However, it has been a puzzle why S. typhimurium might employ two toxins with redundant function. We hypothesized that SopE and SopE2 might have different specificities for certain host cellular RhoGTPases. In vitro guanine nucleotide exchange assays and surface plasmon resonance measurements revealed that SopE is an efficient guanine nucleotide exchange factor for Cdc42 and Rac1, whereas SopE2 was interacting efficiently only with Cdc42, but not with Rac1. Affinity precipitation of Cdc42.GTP and Rac1.GTP from lysates and characteristic cytoskeletal rearrangements of infected tissue culture cells confirmed that SopE is highly efficient at activating Cdc42 and Rac1 in vivo, whereas SopE2 was efficiently activating Cdc42, but not Rac1. We conclude that the translocated effector proteins SopE and SopE2 allow S. typhimurium to specifically activate different sets of RhoGTPase signaling cascades.  相似文献   

6.
The Rho family GTPase Rac acts as a molecular switch for signal transduction to regulate various cellular functions. Mice deficient in the hematopoietic-specific Rac2 isoform exhibit agonist-specific defects in neutrophil chemotaxis and superoxide production, despite expression of the highly homologous Rac1 isoform. To examine whether functional defects in rac2(-/-) neutrophils reflect effects of an overall decrease in total cellular Rac or an isoform-specific role for Rac2, retroviral vectors were used to express exogenous Rac1 or Rac2 at levels similar to endogenous. In rac2(-/-) neutrophils differentiated from transduced myeloid progenitors in vitro, increasing cellular Rac levels by expression of either exogenous Rac1 or Rac2 increased formylmethionylleucylphenylalanine- or phorbol ester-stimulated NADPH oxidase activity. Of note, placement of an epitope tag on the N terminus of Rac1 or Rac2 blunted reconstitution of responses in rac2(-/-) neutrophils. In rac2(-/-) neutrophils isolated from mice transplanted with Rac-transduced bone marrow cells, superoxide production and chemotaxis were fully reconstituted by expression of exogenous Rac2, but not Rac1. A chimeric Rac1 protein in which the Rac1 C-terminal polybasic domain, which contains six lysines or arginines, was replaced with that of the human Rac2 polybasic domain containing only three basic residues, also reconstituted superoxide production and chemotaxis, whereas expression of a Rac2 derivative in which the polybasic domain was replaced with that of Rac1 did not and resulted in disoriented cell motility. Thus, the composition of the polybasic domain is sufficient for determining Rac isoform specificity in the production of superoxide and chemotaxis in murine neutrophils in vivo.  相似文献   

7.
8.
9.
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose expression causes deregulated growth in NIH 3T3 mouse fibroblasts. Although Rac1 has not been shown to be a substrate for Dbs in either in vitro or in vivo assays, the Rat ortholog of Dbs (Ost) has been shown to bind specifically to GTP.Rac1 in vitro. The dependence of the Rac1/Dbs interaction on GTP suggests that Dbs may in fact be an effector for Rac1. Here we show that the interaction between activated Rac1 and Dbs can be recapitulated in mammalian cells and that the Rac1 docking site resides within the pleckstrin homology domain of Dbs. This interaction is specific for Rac1 and is not observed between Rac1 and several other members of the Rho-specific guanine nucleotide exchange factor family. Co-expression of Dbs with activated Rac1 causes enhanced focus forming activity and elevated levels of GTP.RhoA in NIH 3T3 cells, indicating that Dbs is activated by the interaction. Consistent with this, activated Rac1 co-localizes with Dbs in NIH 3T3 cells, and natively expressed Rac1 relocalizes in response to Dbs expression. To summarize, we have characterized a surprisingly direct pleckstrin homology domain-mediated mechanism through which Rho GTPases can become functionally linked.  相似文献   

10.
Protein tyrosine kinase activation is an important requisite for leukocyte migration. Herein we demonstrate that NK cell binding to endothelium activates proline-rich tyrosine kinase 2 (Pyk-2) and the small GTP binding protein Rac that are coupled to integrin and chemokine receptors. Chemokine-mediated, but not integrin-mediated, Pyk-2 and Rac activation was sensitive to pretreatment of NK cells with pertussis toxin, a pharmacological inhibitor of G(i) protein-coupled receptors. Both Pyk-2 and Rac are functionally involved in chemokine-induced NK cell migration through endothelium or ICAM-1 or VCAM-1 adhesive proteins, as shown by the use of recombinant vaccinia viruses encoding dominant negative mutants of Pyk-2 and Rac. Moreover, we found that Pyk-2 is associated with the Rac guanine nucleotide exchange factor Vav, which undergoes tyrosine phosphorylation upon integrin triggering. Finally, we provide direct evidence for the involvement of Pyk-2 in the control of both chemokine- and integrin-mediated Rac activation. Collectively, our results indicate that Pyk-2 acts as a receptor-proximal link between integrin and chemokine receptor signaling, and the Pyk-2/Rac pathway plays a pivotal role in the control of NK cell transendothelial migration.  相似文献   

11.
12.
13.
Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat domain (ARD) of ankyrin is responsible for Tiam1 binding. Biochemical studies and deletion mutation analyses indicate that the 11-amino acid sequence between amino acids 717 and 727 of Tiam1 ((717)GEGTDAVKRS(727)L) is the ankyrin-binding domain. Most importantly, ankyrin binding to Tiam1 activates GDP/GTP exchange on Rho GTPases (e.g., Rac1).Using an Escherichia coli-derived calmodulin-binding peptide (CBP)-tagged recombinant Tiam1 (amino acids 393-728) fragment that contains the ankyrin-binding domain, we have detected a specific binding interaction between the Tiam1 (amino acids 393-738) fragment and ankyrin in vitro. This Tiam1 fragment also acts as a potent competitive inhibitor for Tiam1 binding to ankyrin. Transfection of SP-1 cell with Tiam1 cDNAs stimulates all of the following: (1) Tiam1-ankyrin association in the membrane projection; (2) Rac1 activation; and (3) breast tumor cell invasion and migration. Cotransfection of SP1 cells with green fluorescent protein (GFP)-tagged Tiam1 fragment cDNA and Tiam1 cDNA effectively blocks Tiam1-ankyrin colocalization in the cell membrane, and inhibits GDP/GTP exchange on Rac1 by ankyrin-associated Tiam1 and tumor-specific phenotypes. These findings suggest that ankyrin-Tiam1 interaction plays a pivotal role in regulating Rac1 signaling and cytoskeleton function required for oncogenic signaling and metastatic breast tumor cell progression.  相似文献   

14.
Activation of Rac1, a member of the Rho family of GTPases, is associated with multiple cellular responses, including membrane ruffling and focal complex formation. The mechanisms by which Rac1 is coupled to these functional responses are not well understood. It was recently shown that ARF6, a GTPase implicated in cytoskeletal alterations and a membrane recycling pathway, is required for Rac1-dependent phagocytosis in macrophages (Q. Zhang et al., J. Biol. Chem. 273:19977-19981, 1998). To determine whether ARF6 is required for Rac1-dependent cytoskeletal responses in macrophages, we expressed wild-type (WT) or guanine nucleotide binding-deficient alleles (T27N) of ARF6 in macrophages coexpressing activated alleles of Rac1 (Q61L) or Cdc42 (Q61L) or stimulated with colony-stimulating factor 1 (CSF-1). Expression of ARF6 T27N but not ARF6 WT inhibited ruffles mediated by Rac1 Q61L or CSF-1. In contrast, expression of ARF6 T27N did not inhibit Rac1 Q61L-mediated focal complex formation and did not impair Cdc42 Q61L-mediated filopodial formation. Cryoimmunogold electron microscopy demonstrated the presence of ARF6 in membrane ruffles induced by either CSF-1 or Rac1 Q61L. Addition of CSF-1 to macrophages led to the redistribution of ARF6 from the interior of the cell to the plasma membrane, suggesting that this growth factor triggers ARF6 activation. Direct targeting of Rac1 to the plasma membrane did not bypass the blockade in ruffling induced by ARF6 T27N, indicating that ARF6 regulates a pathway leading to membrane ruffling that occurs after the activation and membrane association of Rac. These data demonstrate that intact ARF6 function is required for coupling activated Rac to one of several effector pathways and suggest that a principal function of ARF6 is to coordinate Rac activation with plasma membrane-based protrusive events.  相似文献   

15.
The actin cytoskeleton of hepatic stellate cells (HSCs) is reorganized when they are cultured in 3D collagen matrices. Here, we investigated the molecular mechanism of actin cytoskeleton reorganization in HSCs cultured in 3D floating collagen matrices (FCM) compared to those on 2D polystyrene surfaces (PS). First, we found that the generation of dendritic cellular processes was controlled by Rac1. Next, we examined the differential gene expression of HSCs cultured on 2D PS and in 3D FCM by RNA-Seq and focused on the changes of actin cytoskeleton reorganization-related molecular components and guanine nucleotide exchange factors (GEFs). The results showed that the expression of genes associated with actin cytoskeleton reorganization-related cellular components, filopodia and lamellipodia, were significantly decreased, but podosome-related genes was significantly increased in 3D FCM. Furthermore, we found that a Rac1-specific GEF, ARHGEF4, played roles in morphological changes, migration and podosome-related gene expression in HSCs cultured in 3D FCM.

Abbreviations: 2D PS: 2-dimensional polystyrene surface; 3D FCM: 3-dimensional floating collagen matrices; ARHGEF4: Rho guanine nucleotide exchange factor 4; ARHGEF6: Rho guanine nucleotide exchange factor 6; GEF: guanine nucleotide exchange factor; HSC: hepatic stellate cell  相似文献   


16.
Both cell adhesion protein CD44 and its main ligand hyaluronic acid (HA) are thought to be involved in several processes ultimately requiring cytoskeleton rearrangements. Here, we show that the small guanine nucleotide (GTP)-binding protein, Rac1, can be activated upon HA binding to CD44. When applied locally to a passive cell edge, HA promoted the formation of lamellipodial protrusions in the direction of the stimulus. This process was inhibited by the prior injection of cells with dominant-negative N17Rac recombinant protein or by pretreatment of cells with monoclonal anti-CD44 antibodies, interfering with HA binding, implying the direct involvement of CD44 in signaling to Rac1.  相似文献   

17.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

18.
Rho-family GTPases have been implicated in actin remodeling and subsequent morphologic changes in various cells. DEF6, a pleckstrin homology domain-containing protein, has been reported to regulate Rho-family GTPases as a guanine nucleotide exchange factor. Here, we demonstrate that DEF6 also has the property of cooperating with activated Rac1. DEF6 bound selectively to Rac1 loaded with GTP. The interaction is mediated by the effector domain of Rac1. Overexpression of GFP-DEF6 together with constitutively active Rac1 in COS-7 cells significantly changed their cell shape; this was not seen in the absence of activated Rac1. This effect of DEF6 on cellular morphology was shown to be independent of its guanine nucleotide exchange activity. Because DEF6 does not contain any sequences previously known to interact with Rac, we explored the domain necessary for the binding. The amino-terminal portion and central parts of DEF6 were required for the binding. Finally, we succeeded in creating mutants of DEF6 with point mutations in the amino-terminal portion, which abrogate the binding to activated Rac1. These mutants did not exhibit the morphologic change in COS-7 cells when they were co-expressed with activated Rac1. These results suggest that DEF6 not only activates Rho-family GTPases but also cooperates with activated Rac1 to exert its cellular function.  相似文献   

19.
Elevated cellular plasminogen activator activity has been associated with significant alterations in the in vitro phenotype of both malignant cell lines and nonmalignant endothelial cells. To examine the role of elevated cellular plasminogen activator activity in the production of altered endothelial cell behavior, bovine coronary artery endothelial cells were transduced with a retroviral vector expressing large amounts of tissue plasminogen activator. Cells transduced with the tissue plasminogen activator vector were compared with both untransduced cells and cells transduced with a control vector in a series of in vitro assays of cellular attachment, proliferation, migration, and invasion. The morphology of the 2 transduced populations was unchanged. There was a small decrease (5–15%) in the horizontal migration rate of both transduced cell populations, as compared with that of untransduced cells. No significant differences were detected among the three cell populations in any of the other assays. We conclude that expression of high levels of tissue plasminogen activator does not specifically affect endothelial cell phenotype in vitro. These data lend support to the hypothesis that elevated plasminogen activator activity is necessary but not sufficient to produce alterations in endothelial cell behavior. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Focal adhesions (FAs) are dynamic structures that connect the actin cytoskeleton with the extracellular matrix. At least six ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), including ARAP2 (an Arf6 GAP), are implicated in regulation of FAs but the mechanisms for most are not well defined. Although Rac1 has been reported to function downstream of Arf6 to control membrane ruffling and cell migration, this pathway has not been directly examined as a regulator of FAs. Here we test the hypothesis that ARAP2 promotes the growth of FAs by converting Arf6·GTP to Arf6·GDP thereby preventing the activation of the Rho family GTP-binding protein Rac1. Reduced expression of ARAP2 decreased the number and size of FAs in cells and increased cellular Arf6·GTP and Rac1·GTP levels. Overexpression of ARAP2 had the opposite effects. The effects of ARAP2 on FAs and Rac1 were dependent on a functional ArfGAP domain. Constitutively active Arf6 affected FAs in the same way as did reduced ARAP2 expression and dominant negative mutants of Arf6 and Rac1 reversed the effect of reduced ARAP2 expression. However, neither dominant negative Arf6 nor Rac1 had the same effect as ARAP2 overexpression. We conclude that changes in Arf6 and Rac1 activities are necessary but not sufficient for ARAP2 to promote the growth of FAs and we speculate that ARAP2 has additional functions that are effector in nature to promote or stabilize FAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号