首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study of the interaction between thioredoxin and the model enzyme pI258 arsenate reductase (ArsC) from Staphylococcus aureus. ArsC catalyses the reduction of arsenate to arsenite. Three redox active cysteine residues (Cys10, Cys82 and Cys89) are involved. After a single catalytic arsenate reduction event, oxidized ArsC exposes a disulphide bridge between Cys82 and Cys89 on a looped-out redox helix. Thioredoxin converts oxidized ArsC back towards its initial reduced state. In the absence of a reducing environment, the active-site P-loop of ArsC is blocked by the formation of a second disulphide bridge (Cys10-Cys15). While fully reduced ArsC can be recovered by exposing this double oxidized ArsC to thioredoxin, the P-loop disulphide bridge is itself inaccessible to thioredoxin. To reduce this buried Cys10-Cys15 disulphide-bridge in double oxidized ArsC, an intra-molecular Cys10-Cys82 disulphide switch connects the thioredoxin mediated inter-protein thiol-disulphide transfer to the buried disulphide. In the initial step of the reduction mechanism, thioredoxin appears to be selective for oxidized ArsC that requires the redox helix to be looped out for its interaction. The formation of a buried disulphide bridge in the active-site might function as protection against irreversible oxidation of the nucleophilic cysteine, a characteristic that has also been observed in the structurally similar low molecular weight tyrosine phosphatase.  相似文献   

2.
Arsenate reductase (ArsC) encoded by Staphylococcus aureus arsenic-resistance plasmid pI258 reduces intracellular arsenate(V) to the more toxic arsenite(III), which is subsequently extruded from the cell. It couples to thioredoxin, thioredoxin reductase and NADPH to be enzymatically active. ArsC is extremely sensitive to oxidative inactivation, has a very dynamic character hampering resonance assignments in NMR and produces peculiar biphasic Michaelis-Menten curves with two V(max) plateaus. In this study, methods to control ArsC oxidation during purification have been optimized. Next, application of Selwyn's test of enzyme inactivation was applied to progress curves and reveals that the addition of tetrahedral oxyanions (50 mM sulfate, phosphate or perchlorate) allows the control of ArsC stability and essentially eliminates the biphasic character of the Michaelis-Menten curves. Finally, 1H-15N HSQC NMR spectroscopy was used to establish that these oxyanions, including the arsenate substrate, exert their stabilizing effect on ArsC through binding with residues located within a C-X5-R sequence motif, characteristic for phosphotyrosine phosphatases. In view of this need for a tetrahedral oxyanion to structure its substrate binding site in its active conformation, a reappraisal of basic kinetic parameters of ArsC was necessary. Under these new conditions and in contrast to previous observations, ArsC has a high substrate specificity, as only arsenate could be reduced ( Km=68 microM, k(cat)/ Km =5.2 x 10(4 )M-1s-1), while its product, arsenite, was identified as a mixed inhibitor ( K*iu=534 microM, K*ic=377 microM).  相似文献   

3.
Guo X  Li Y  Peng K  Hu Y  Li C  Xia B  Jin C 《The Journal of biological chemistry》2005,280(47):39601-39608
Arsenate reductase encoded by the chromosomal arsC gene in Bacillus subtilis catalyzes the intracellular reduction of arsenate to arsenite, which is then extruded from cells through an efficient and specific transport system. Herein, we present the solution structures and backbone dynamics of both the reduced and oxidized forms of arsenate reductase from B. subtilis. The overall structures of both forms are similar to those of bovine low molecular weight protein-tyrosine phosphatase and arsenate reductase from Staphylococcus aureus. However, several features of the tertiary structure and mobility are notably different between the reduced and oxidized forms of B. subtilis arsenate reductase, particularly in the P-loop region and the segment Cys(82)-Cys(89). The backbone dynamics results demonstrated that the reduced form of arsenate reductase undergoes millisecond conformational changes in the functional P-loop and Cys(82)-Cys(89), which may facilitate the formation of covalent intermediates and subsequent reduction of arsenate. In the oxidized form, Cys(82)-Cys(89) shows motional flexibility on both picosecond-to-nanosecond and possibly millisecond time scales, which may facilitate the reduction of the oxidized enzyme by thioredoxin to regenerate the active enzyme. Overall, the internal dynamics and static structures of the enzyme provide insights into the molecular mechanism of arsenate reduction, especially the reversible conformational switch and changes in internal motions associated with the catalytic reaction.  相似文献   

4.
Arsenic compounds commonly exist in nature and are toxic to nearly all kinds of life forms, which directed the evolution of enzymes in many organisms for arsenic detoxification. In bacteria, the thioredoxin-coupled arsenate reductase catalyzes the reduction of arsenate to arsenite by intramolecular thiol-disulfide cascade. The oxidized arsenate reductase ArsC is subsequently regenerated by thioredoxin through an intermolecular thiol-disulfide exchange process. The solution structure of the Bacillus subtilis thioredoxin-arsenate reductase complex represents the transiently formed intermediate during the intermolecular thiol-disulfide exchange reaction. A comparison of the complex structure with that of thioredoxin and arsenate reductase proteins in redox states showed substantial conformational changes coupled to the reaction process, with arsenate reductase, especially, adopting an "intermediate" conformation in the complex. Our current studies provide novel insights into understanding the reaction mechanisms of the thioredoxin-arsenate reductase pathway.  相似文献   

5.
Arsenate reductase (ArsC) encoded by Staphylococcus aureus arsenic-resistance plasmid pI258 reduces intracellular As(V) (arsenate) to the more toxic As(III) (arsenite). In order to study the structure of ArsC and to unravel biochemical and physical properties of this redox enzyme, wild type enzyme and a number of cysteine mutants were overproduced soluble in Escherichia coli. In this paper we describe a novel purification method to obtain high production levels of highly pure enzyme. A reversed-phase method was developed to separate and analyze the many different forms of ArsC. The oxidation state and the methionine oxidized forms were determined by mass spectroscopy.  相似文献   

6.
The frequent abundance of arsenic in the environment has guided the evolution of enzymes for the reduction of arsenate. The arsenate reductases (ArsC) from different sources have unrelated sequences and structural folds, and can be divided into different classes on the basis of their structures, reduction mechanisms and the locations of catalytic cysteine residues. The thioredoxin-coupled arsenate reductase class is represented by Staphylococcus aureus pI258 ArsC and Bacillus subtilis ArsC. The ArsC from Escherichia coli plasmid R773 and the eukaryotic ACR2p reductase from Saccharomyces cerevisiae represent two distinct glutaredoxin-linked ArsC classes. All are small cytoplasmic redox enzymes that reduce arsenate to arsenite by the sequential involvement of three different thiolate nucleophiles that function as a redox cascade. In contrast, the ArrAB complex is a bacterial heterodimeric periplasmic or a surface-anchored arsenate reductase that functions as a terminal electron acceptor and transfers electrons from the membrane respiratory chain to arsenate. Finally, the less well documented arsenate reductase activity of the monomeric arsenic(III) methylase, which is an S-adenosylmethionine (AdoMet)-dependent methyltransferase. After each oxidative methylation cycle and before the next methylation step, As(V) is reduced to As(III). Methylation by this enzyme is also considered an arsenic-resistance mechanism for bacteria, fungi and mammals.  相似文献   

7.
Arsenate reductase (ArsC) from Staphylococcus aureus plasmid pI258 plays a role in bacterial heavy metal resistance and catalyzes the reduction of arsenate to arsenite. The structures of the oxidized and reduced forms of ArsC were solved. ArsC has the PTPase I fold typical for low molecular weight tyrosine phosphatases (LMW PTPases). Remarkably, kinetic experiments show that pI258 ArsC also catalyzes the tyrosine phosphatase reaction in addition to arsenate reduction. These results provide evidence that ArsC from pI258 evolved from LMW PTPase by the grafting of a redox function onto a pre-existing catalytic site and that its evolutionary origin is different from those of arsenate reductases from Escherichia coli plasmid R773 and from Saccharomyces cerevisiae. The mechanism proposed here for the catalysis of arsenate reduction by pI258 ArsC involves a nucleophilic attack by Cys 10 on arsenate, the formation of a covalent intermediate and the transport of oxidative equivalents by a disulfide cascade. The reaction is associated with major structural changes in the ArsC.  相似文献   

8.
Arsenic is a ubiquitous environmental toxic metal. Consequently, organisms detoxify arsenate by reduction to arsenite, which is then excreted or sequestered. The ArsC arsenate reductase from Escherichia coli plasmid R773, the best characterized arsenic-modifying enzyme, has a catalytic cysteine, Cys 12, in the active site, surrounded by an arginine triad composed of Arg 60, Arg 94, and Arg 107. During the reaction cycle, the native enzyme forms a unique monohydroxyl Cys 12-thiol-arsenite adduct that contains a positive charge on the arsenic. We hypothesized previously that this unstable intermediate allows for rapid dissociation of the product arsenite. In this study, the role of Arg 60 in product formation was evaluated by mutagenesis. A total of eight new structures of ArsC were determined at resolutions between 1.3 A and 1.8 A, with R(free) values between 0.18 and 0.25. The crystal structures of R60K and R60A ArsC equilibrated with the product arsenite revealed a covalently bound Cys 12-thiol-dihydroxyarsenite without a charge on the arsenic atom. We propose that this intermediate is more stable than the monohydroxyarsenite intermediate of the native enzyme, resulting in slow release of product and, consequently, loss of activity.  相似文献   

9.
Arsenate reductases (ArsC) are a group of enzymes that play essential roles in biological arsenic detoxification pathways by catalyzing the intracellular reduction of arsenate to arsenite, which is subsequently extruded from the cells by specific transport systems. The ArsC protein from cyanobacterium Synechocystis sp. strain PCC 6803 (SynArsC) is related to the thioredoxin-dependent ArsC family, but uses the glutathione/glutaredoxin system for arsenate reduction. Therefore, it is classified to a novel thioredoxin/glutaredoxin hybrid arsenate reductase family. Herein we report the chemical shift assignments of 1H, 13C and 15N atoms for the reduced form of SynArsC, which provides a starting point for further structural analysis and elucidation of its enzymatic mechanism.  相似文献   

10.
Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.  相似文献   

11.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8? resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

12.
The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx.  相似文献   

13.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (Em) value of − 165 mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, Em value of − 220 mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8 Å resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

14.
15.
16.
In the thioredoxin (Trx)-coupled arsenate reductase family, arsenate reductase from Staphylococcus aureus plasmid pI258 (Sa_ArsC) and from Bacillus subtilis (Bs_ArsC) are structurally related detoxification enzymes. Catalysis of the reduction of arsenate to arsenite involves a P-loop (Cys10Thr11Gly12Asn13Ser14Cys15Arg16) structural motif and a disulphide cascade between three conserved cysteine residues (Cys10, Cys82 and Cys89). For its activity, Sa_ArsC benefits from the binding of tetrahedral oxyanions in the P-loop active site and from the binding of potassium in a specific cation-binding site. In contrast, the steady-state kinetic parameters of Bs_ArsC are not affected by sulphate or potassium. The commonly occurring mutation of a histidine (H62), located about 6 A from the potassium-binding site in Sa_ArsC, to a glutamine uncouples the kinetic dependency on potassium. In addition, the binding affinity for potassium is affected by the presence of a lysine (K33) or an aspartic acid (D33) in combination with two negative charges (D30 and E31) on the surface of Trx-coupled arsenate reductases. In the P-loop of the Trx-coupled arsenate reductase family, the peptide bond between Gly12 and Asn13 can adopt two distinct conformations. The unique geometry of the P-loop with Asn13 in beta conformation, which is not observed in structurally related LMW PTPases, is stabilized by tetrahedral oxyanions and decreases the pK(a) value of Cys10 and Cys82. Tetrahedral oxyanions stabilize the P-loop in its catalytically most active form, which might explain the observed increase in k(cat) value for Sa_ArsC. Therefore, a subtle interplay of potassium and sulphate dictates the kinetics of Trx-coupled arsenate reductases.  相似文献   

17.
18.
The deduced protein product of open reading frame slr0946 from Synechocystis sp. strain PCC 6803, SynArsC, contains the conserved sequence features of the enzyme superfamily that includes the low-molecular-weight protein-tyrosine phosphatases and the Staphylococcus aureus pI258 ArsC arsenate reductase. The recombinant protein product of slr0946, rSynArsC, exhibited vigorous arsenate reductase activity (V(max) = 3.1 micro mol/min. mg), as well as weak phosphatase activity toward p-nitrophenyl phosphate (V(max) = 0.08 micro mol/min. mg) indicative of its phosphohydrolytic ancestry. pI258 ArsC from S. aureus is the prototype of one of three distinct families of detoxifying arsenate reductases. The prototypes of the others are Acr2p from Saccharomyces cerevisiae and R773 ArsC from Escherichia coli. All three have converged upon catalytic mechanisms involving an arsenocysteine intermediate. While SynArsC is homologous to pI258 ArsC, its catalytic mechanism exhibited a unique combination of features. rSynArsC employed glutathione and glutaredoxin as the source of reducing equivalents, like Acr2p and R773 ArsC, rather than thioredoxin, as does the S. aureus enzyme. As postulated for Acr2p and R773 ArsC, rSynArsC formed a covalent complex with glutathione in an arsenate-dependent manner. rSynArsC contains three essential cysteine residues like pI258 ArsC, whereas the yeast and E. coli enzymes require only one cysteine for catalysis. As in the S. aureus enzyme, these "extra" cysteines apparently shuttle a disulfide bond to the enzyme's surface to render it accessible for reduction. SynArsC and pI258 ArsC thus appear to represent alternative branches in the evolution of their shared phosphohydrolytic ancestor into an agent of arsenic detoxification.  相似文献   

19.
BACKGROUND: In Escherichia coli bearing the plasmid R773, resistance to arsenite, arsenate, antimonite, and tellurite is conferred by the arsRDABC plasmid operon that codes for an ATP-dependent anion pump. The product of the arsC gene, arsenate reductase (ArsC), is required to efficiently catalyze the reduction of arsenate to arsenite prior to extrusion. RESULTS: Here, we report the first X-ray crystal structures of ArsC at 1.65 A and of ArsC complexed with arsenate and arsenite at 1.26 A resolution. The overall fold is unique. The native structure shows sulfate and sulfite ions binding in the active site as analogs of arsenate and arsenite. The covalent adduct of arsenate with Cys-12 in the active site of ArsC, which was analyzed in a difference map, shows tetrahedral geometry with a sulfur-arsenic distance of 2.18 A. However, the corresponding adduct with arsenite binds as a hitherto unseen thiarsahydroxy adduct. Finally, the number of bound waters (385) in this highly ordered crystal structure approaches twice the number expected at this resolution for a structure of 138 ordered residues. CONCLUSIONS: Structural information from the adduct of ArsC with its substrate (arsenate) and with its product (arsenite) together with functional information from mutational and biochemical studies on ArsC suggest a plausible mechanism for the reaction. The exceptionally well-defined water structure indicates that this crystal system has precise long-range order within the crystal and that the upper limit for the number of bound waters in crystal structures is underestimated by the structures in the Protein Data Bank.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号