首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wide Dynamic Range (WDR) neurons in the spinal cord receive inputs from the contralateral side that, under normal conditions, are ineffective in generating an active response. These inputs are effective when the target WDRs change their excitability conditions. To further reveal the mechanisms supporting this effectiveness shift, we investigated the weight of the excitation of the contralateral neurons on the target WDR responses. In the circuit of presynaptic (sending) and postsynaptic (receiving) neurons in crossed spinal connections the fibres that form the presynaptic neurons impinge on postsynaptic neurons can be considered the final relay of this contralateral pathway. The enhancement of the presynaptic neuron excitability may thus modify the efficacy of the contralateral input. Pairs of neurons each on a side of the spinal cord, at the L5–L6 lumbar level were simultaneously recorded in intact, anaesthetized, paralysed rats. The excitatory aminoacid NMDA and strychnine, the antagonist of the inhibitory aminoacid glycine, were iontophoretically administrated to presynaptic neurons to increase their excitability. Before and during the drug administration, spontaneous and noxious-evoked activities of the neurons were analysed. During the iontophoresis of the two substances we found that noxious stimuli applied to the receptive field of presynaptic neurons activated up to 50% of the previously unresponsive postsynaptic neurons on the opposite side. Furthermore, the neurons on both sides of the spinal cord showed significantly increased spontaneous activity and amplified responses to ipsilateral noxious stimulation. These findings indicate that the contralateral input participates in the circuit dynamics of spinal nociceptive transmission, by modulating the excitability of the postsynaptic neurons. A possible functional role of such a nociceptive transmission circuit in neuronal sensitization following unilateral nerve injury is hypothesized.  相似文献   

2.
Summary 1. Zinc-induced actions were studied on the A-current and neuronal activity in identified and unidentified nerve cells of the snail,Helix pomatia L., under voltage and current clamp conditions.2. Extracellularly applied Zn2+ attenuated the peak amplitude of the A-current in a potential- and dose-dependent way (K i=1.8 mM at –30 mV,n H=0.6).3. Attenuation of the A-currents was initiated as Zn2+ shifted the potential dependence of both activation and inactivation of the currents toward more positive potential values.4. Zinc concomitantly prolonged the time to peak and decay time constant of the A-currents (K d=1.7 mM,n H=1.4) as well.5. Zn2+ decreased the resting membrane potential and the spike amplitude and increased the action potential duration and the input resistance of the cells in current clamp experiments.6. A complex action of zinc increased the neuronal excitability, indicating spontaneous and synaptically evoked spike discharges.7. Common and specific zinc binding sites are supposed on vertebrate and invertebrate A-type potassium channel proteins, where binding Zn2+ can modulate the gating properties and kinetics of the fast outward potassium currents.  相似文献   

3.
Changes in central neural processing are thought to contribute to the development of chronic osteoarthritis pain. This may be reflected as the presence of inflammatory mediators in the cerebral spinal fluid (CSF). We therefore exposed organotypically cultured slices of rat spinal cord to CSF from human subjects with osteoarthritis (OACSF) at a ratio of 1 part CSF in 9 parts culture medium for 5-6 days, and measured changes in neuronal electrophysiological properties by means of whole-cell recording. Although OACSF had no effect on the membrane properties and excitability of neurons in the substantia gelatinosa, synaptic transmission was clearly altered. The frequency of spontaneous excitatory postsynaptic currents (sEPSC) in delay-firing putative excitatory neurons was increased, as was sEPSC amplitude and frequency in tonic-firing inhibitory neurons. These changes could affect sensory processing in the dorsal horn, and may affect the transfer of nociceptive information. Although OACSF also affected inhibitory synaptic transmission (frequency of spontaneous inhibitory synaptic currents; sIPSC), this may have little bearing on sensory processing by substantia gelatinosa neurons, as sEPSC frequency is >3× greater than sIPSC frequency in this predominantly excitatory network. These results support the clinical notion that changes in nociceptive processing at the spinal level contribute to the generation of chronic osteoarthritis pain.  相似文献   

4.
This study investigated the effect of sex hormones on mustard oil (MO)-induced visceral hypersensitivity in female rats and analyzed possible involved signaling pathways. Female rats, either intact or ovariectomized (OVX), were prepared for abdominal muscle electromyography in response to colorectal distension after intracolonic instillation of MO. The effect of MO intracolonic sensitization was evaluated in intact rats, OVX rats, and OVX rats pretreated with a single injection of 17beta-estradiol (E), progesterone (P), E+P, or vehicle. cAMP-responsive element-binding protein (CREB) and phosphorylated CREB (pCREB) were detected in the superficial dorsal horn of L6 and S1 in MO or mineral oil-treated OVX rats with/without colorectal distension and estrogen replacement. The distal colorectum was removed for histological evaluation of inflammatory severity in MO-treated intact or OVX rats. The MO-treated rats had significantly higher visceromotor reflex than controls (enhanced visceral hypersensitivity), whereas OVX eliminated this hypersensitivity. After a single injection of E or E+P, the rats rapidly restored MO-induced visceral hypersensitivity within 2 h. Estrogen also rapidly induced a dose-dependent increase in pCREB expression in the superficial dorsal horn neurons in MO-treated, but not mineral oil-treated, OVX rats. The present study suggests that estrogen can rapidly modulate visceral hypersensitivity induced by MO intracolonic instillation in conscious female rats, which may involve spinal activation of the cAMP response element-mediated gene induction pathway.  相似文献   

5.
Diabetic neuropathic pain is associated with increased glutamatergic input in the spinal dorsal horn. Group I metabotropic glutamate receptors (mGluRs) are involved in the control of neuronal excitability, but their role in the regulation of synaptic transmission in diabetic neuropathy remains poorly understood. Here we studied the role of spinal mGluR5 and mGluR1 in controlling glutamatergic input in a rat model of painful diabetic neuropathy induced by streptozotocin. Whole-cell patch-clamp recordings of lamina II neurons were performed in spinal cord slices. The amplitude of excitatory post-synaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than in control rats. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) inhibited evoked EPSCs and sEPSCs more in diabetic than in control rats. Also, the percentage of neurons in which sEPSCs and evoked EPSCs were affected by MPEP or the group I mGluR agonist was significantly higher in diabetic than in control rats. However, blocking mGluR1 had no significant effect on evoked EPSCs and sEPSCs in either groups. The mGluR5 protein level in the dorsal root ganglion, but not in the dorsal spinal cord, was significantly increased in diabetic rats compared with that in control rats. Furthermore, intrathecal administration of MPEP significantly increased the nociceptive pressure threshold only in diabetic rats. These findings suggest that increased mGluR5 expression on primary afferent neurons contributes to increased glutamatergic input to spinal dorsal horn neurons and nociceptive transmission in diabetic neuropathic pain.  相似文献   

6.
We recorded the spike activity from spinal neurons In rats with a model of neuropathy after ligation of then. ishiadicus. A significantly increased frequency of background discharges and responsiveness to nonnoxious stimuli were observed in dorsal horn wide-dynamic range (convergent) neurons in a group of allodynic rats, as compared with non-allodynic and intact rats. Spinal cord stimulation (SCS) Induced a significant depression of both the principal responses and afterdischarges in allodynic rats. The frequency of background discharges was markedly decreased in approximately one third of the neurons. These effects outlasted SCS by about 10 rain. The moderating effect of SCS is considered a result of activation of distinctly different and complementary mechanisms: segmental and transsupraspinal. The former appears to be the most important in allodynic animals.  相似文献   

7.
Owolabi SA  Saab CY 《FEBS letters》2006,580(18):4306-4310
Fractalkine (FKN) evokes nociceptive behavior in nai ve rats, whereas minocycline attenuates pain acutely after neuronal injury. We show that, in nai ve rats, FKN causes hyperresponsiveness of lumbar wide dynamic range neurons to brush, pressure and pinch applied to the hindpaw. One day after spinal nerve ligation (SNL), minocycline attenuates after-discharge and responses to brush and pressure. In contrast, minocycline does not alter evoked neuronal responses 10 days after SNL or sciatic constriction, but increases spontaneous discharge. We speculate that microglia rapidly alter sensory neuronal activity in nai ve and neuropathic rats acutely, but not chronically, after injury.  相似文献   

8.
To study the physiological effects of chronic intermittent hypoxia on neuronal excitability and function in mice, we exposed animals to cyclic hypoxia for 8 h daily (12 cycles/h) for approximately 4 wk, starting at 2-3 days of age, and examined the properties of freshly dissociated hippocampal neurons in vitro. Compared with control (Con) hippocampal CA1 neurons, exposed (Cyc) neurons showed action potentials (AP) with a smaller amplitude and a longer duration and a more depolarized resting membrane potential. They also have a lower rate of spontaneous firing of AP and a higher rheobase. Furthermore, there was downregulation of the Na(+) current density in Cyc compared with Con neurons (356.09 +/- 54.03 pA/pF in Cyc neurons vs. 508.48 +/- 67.30 pA/pF in Con, P < 0.04). Na(+) channel characteristics, including activation, steady-state inactivation, and recovery from inactivation, were similar in both groups. The deactivation rate, however, was much larger in Cyc than in Con (at -100 mV, time constant for deactivation = 0.37 +/- 0.04 ms in Cyc neurons and 0.18 +/- 0.01 ms in Con neurons). We conclude that the decreased neuronal excitability in mice neurons treated with cyclic hypoxia is due, at least in part, to differences in passive properties (e.g., resting membrane potential) and in Na(+) channel expression and/or regulation. We hypothesize that this decreased excitability is an adaptive response that attempts to decrease the energy expenditure that is used for adjusting disturbances in ionic homeostasis in low-O(2) conditions.  相似文献   

9.
The indirect immunofluorescence technique was used to localize substance P, somatostatin, methionine--enkephalin, neurotensin, and oxytocin in the dorsal horn of the rat spinal cord. The unique distribution of each peptide is described and the relative amount of each peptide in laminae I--III of the dorsal horn and the dorsal part of the lateral funniculus qualitatively assessed. Colchicine treatment and dorsal rhizotomy were used to determine, in part, the origin of immunoreactive fibers and terminals observed in the dorsal horn.  相似文献   

10.
11.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.  相似文献   

12.
13.
14.
Zhang YH  Yang K  Li YQ  Shi JW 《生理学报》1998,50(3):275-279
用免疫组化染色方法,观察了P物质受体在外周对伤害性刺激信息的介导作用。于福尔马林注入双侧后肢足底前10min,将不同浓度的SP受体特异性拮抗剂L668,169注入一侧足底,另一侧注入生理盐水。结果:10^-4mol/L的L668,169明显抑制了该侧脊髓背角浅层c-fos基因的表达而对深层影响不大;  相似文献   

15.
Our electrophysiological studies have shown that both purinergic and glutamatergic receptors are involved in central sensitization of nociceptive neurons in the medullary dorsal horn (MDH). Here we assessed the effects of intrathecal administration of apyrase (a nucleotide degrading enzyme of endogenous adenosine 5-triphosphate [ATP]), a combination of apyrase and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, an adenosine A1 receptor antagonist), or 2,3-O-2,4,6-trinitrophenyl-adenosine triphosphate (TNP-ATP, a P2X1, P2X3, P2X2/3 receptor antagonist) on the release of glutamate in the rat MDH evoked by application of mustard oil (MO) to the molar tooth pulp. In vivo microdialysis was used to dialyse the MDH every 5 min, and included 3 basal samples, 6 samples after drug treatment and 12 samples following application of MO. Tooth pulp application of MO induced a significant increase in glutamate release in the MDH. Superfusion of apyrase or TNP-ATP alone significantly reduced the MO-induced glutamate release in the MDH, as compared to vehicle. Furthermore, the suppressive effects of apyrase on glutamate release were reduced by combining it with DPCPX. This study demonstrates that application of an inflammatory irritant to the tooth pulp induces glutamate release in the rat MDH in vivo that may be reduced by processes involving endogenous ATP and adenosine.  相似文献   

16.
Our electrophysiological studies have shown that both purinergic and glutamatergic receptors are involved in central sensitization of nociceptive neurons in the medullary dorsal horn (MDH). Here we assessed the effects of intrathecal administration of apyrase (a nucleotide degrading enzyme of endogenous adenosine 5-triphosphate [ATP]), a combination of apyrase and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, an adenosine A1 receptor antagonist), or 2,3-O-2,4,6-trinitrophenyl-adenosine triphosphate (TNP-ATP, a P2X1, P2X3, P2X2/3 receptor antagonist) on the release of glutamate in the rat MDH evoked by application of mustard oil (MO) to the molar tooth pulp. In vivo microdialysis was used to dialyse the MDH every 5 min, and included 3 basal samples, 6 samples after drug treatment and 12 samples following application of MO. Tooth pulp application of MO induced a significant increase in glutamate release in the MDH. Superfusion of apyrase or TNP-ATP alone significantly reduced the MO-induced glutamate release in the MDH, as compared to vehicle. Furthermore, the suppressive effects of apyrase on glutamate release were reduced by combining it with DPCPX. This study demonstrates that application of an inflammatory irritant to the tooth pulp induces glutamate release in the rat MDH in vivo that may be reduced by processes involving endogenous ATP and adenosine.  相似文献   

17.
Qi J  Zhang H  Guo J  Yang L  Wang W  Chen T  Li H  Wu SX  Li YQ 《PloS one》2011,6(8):e23275
The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and γ-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-β-hydroxylase (DBH, a specific marker for norepinephrinergic neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1 receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem.  相似文献   

18.
Computer simulations of a network model of an isofrequency patch of the dorsal cochlear nucleus (DCN) were run to explore possible mechanisms for the level-dependent features observed in the cross-correlograms of pairs of type IV units in the cat and nominal type IV units in the gerbil DCN. The computer model is based on the conceptual model (of a cat) that suggests two sources of shared input to DCN's projection neurons (type IV units): excitatory input from auditory nerves and inhibitory input from interneurons (type II units). Use of tonal stimuli is thought to cause competition between these sources resulting in the decorrelation of type IV unit activities at low levels. In the model, P-cells (projection neurons), representing type IV units, receive inhibitory input from I-cells (interneurons), representing type II units. Both sets of model neurons receive a simulated excitatory auditory nerve (AN) input from same-CF AN fibers, where the AN input is modeled as a dead-time modified Poisson process whose intensity is given by a computationally tractable discharge rate versus sound pressure level function. Subthreshold behavior of each model neuron is governed by a set of normalized state equations. The computer model has previously been shown to reproduce the major response properties of both type IV and type II units (e.g., rate-level curves and peri-stimulus time histograms) and the level-dependence of the functional type II-type IV inhibitory interaction. This model is adapted for the gerbil by simulating a reduced population of I-cells. Simulations were carried out for several auditory nerve input levels, and cross-correlograms were computed from the activities of pairs of P-cells for a complete (cat model) and reduced (gerbil model) population of I-cells. The resultant correlograms show central mounds (CMs), indicative of either shared excitatory or inhibitory input, for both spontaneous and tone-evoked driven activities. Similar to experimental results, CM amplitudes are a non-monotonic function of level and CM widths decrease as a function of level. These results are consistent with the hypothesis that shared excitatory input correlates the spontaneous activities of type IV units and shared inhibitory input correlates their driven activities. The results also suggest that the decorrelation of the activities of type IV units can result from a reduced effectiveness of the AN input as a function of increasing level. Thus, competition between the excitatory and inhibitory inputs is not required.  相似文献   

19.
Zheng JH  Feng W  Jian Z  Chen J 《生理学报》2004,56(2):178-182
为阐明脊髓背角神经元痛放电的年龄相关的动力学变化,本研究采用非线性预报方法,对两组不同年龄大鼠(成年青龄鼠3~4月龄,老年鼠>22月龄)组织损伤诱发的脊髓背角神经元痛放电峰峰间期序列进行了确定性行为的定量分析.结果显示,皮下注入蜜蜂毒,在两组大鼠均诱发脊髓背角广动力域神经元长时程放电,而老龄大鼠的痛放电峰峰间期序列表现出更高的可确定性.本研究表明,单个神经元的痛放电动力学在整个生命过程中并不是恒定不变的,伤害性神经元活动的年龄相关动力学变化可能是老年人群中多样化痛反应的内在机制之一.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号