首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using time-depth recorders to measure diving activity and the doubly-labelled water method to determine energy expenditure, the relationship between foraging behaviour and energy expenditure was investigated in nine Antarctic fur seal females rearing pups. At-sea metabolic rate (MR) (mean of 6.34 ± 0.4 W. kg-1; 4.6 times predicted BMR) was positively correlated to foraging trip duration (mean of 4.21 ± 0.54 days; r2= 0.5, P < 0.04). There were no relationships between MR and the total number of dives, the total time spent diving or the total vertical distance travelled during the foraging trip. There was, however, a close negative sigmoidal relationship (r2= 0.93) between at-sea MR and the proportion of time at sea spent diving. This measure of diving behaviour may provide a useful, inexpensive means of estimating foraging energy expenditure in this species and possibly in other otariids. The rate of diving (m.h-1) was also negatively related to at-sea MR (r2= 0.69, P < 0.005). Body mass gain during a foraging trip had a positive relationship to the time spent at sea (r2= 0.58, P < 0.02) and the total amount of energy expended while at sea (r2= 0.72, P < 0.004) such that, while females undertaking long trips have higher metabolic rates, the energetic efficiency with which females gain mass is independent of the time spent at sea. Therefore, within the range of conditions observed, there is no apparent energetic advantage for females in undertaking foraging trips of any particular duration.  相似文献   

2.
The timing of milk production in Antarctic fur seals was studied at Bird Island, South Georgia. Like all lactating otariid seals (Pinnipedia: Otariidae), Antarctic fur seal females alternate between short nursing periods ashore and regular foraging trips to sea. Females do not necessarily return to the colony with full mammae, which indicates that mammary volume capacity is unlikely to limit foraging trip duration. Upon arrival at the colony, milk fat (r2= 0.33, P < 0.04) and protein (r2= 0.60, P < 0.002) content were positively correlated to the time spent at sea. A similar trend was observed in the milk produced on land. The rate of milk energy production was much lower at sea (5.02 ± 0.05 MJ day-1) than on land (23.66 ± 4.4 MJ-1 day-1). The rate of milk energy production during the foraging trip was negatively correlated to the time spent at sea (r2= 0.29, P < 0.05), whereas the rate of milk energy production on land was positively correlated (r2= 0.61, P < 0.001) to the duration of the preceding foraging trip. The total amount of milk energy delivered to the pup during each twoday nursing period was positively correlated (r2= 0.60, P < 0.002) to the duration of the previous foraging trip. The overall rate of milk energy delivery, however, was independent of foraging trip duration. This accords with previous observations that the growth rates of Antarctic fur seal pups are unaffected by maternal foraging trip duration patterns.  相似文献   

3.
Atlantic mackerel Scomber scombrus are known to be lethal vectors of paralytic shellfish poisoning (PSP) toxins to predators. To elucidate dynamics of PSP toxin accumulation in this species, mackerel were sampled in the Gulf of St Lawrence from May to October 1993. Mackerel appear to retain toxins (saxitoxin, gonyautoxins 2 and 3) year-round. The toxin content of the liver, as determined by high performance liquid chromatography, increased significantly with fish age ( r2 =0.40) and length ( r2 =0.52), suggesting that mackerel progressively accumulate PSP toxins throughout their life. The toxin content of the liver also increased significantly during the summer feeding sojourn in the Gulf of St Lawrence. Comparison of profiles of saxitoxin derivatives indicated that zooplankton were the likely source of PSP toxins found in mackerel. The mean ± S.D toxin content was 17.4 ± 10.6 nmol liver−1 and the mean ± S.D. PSP toxicity was 112.4 ± 67.0 μg saxitoxin equivalents 100 g−1 liver wet weight ( n =247).  相似文献   

4.
When acclaimated for two months at 26 C the social Mashona mole-rat Cryptomys hottentotus darlingi (±S.D.) resting metabolic rate (RMR) of 0·98±0.·14cm2O2g -1 h-1 ( n =21), within a thermal neutral zone (TNZ) of 28 31·5 C ambient temperature (Ta). The body temperature (Tb) of the mole-rat is very low. 33·3±0·5 C, and remained stable between 25 31·5 C ( n =28). Above 33 C. Tb increased to a mean of 34·±0· C (n=28) (Ta range 33 39 C). Below Ta 25 C. Tb showed strong poikilothermic tendencies, with Tb dropping to a mean of 26·8±1·16 C. whereas above Ta25 C. Tb varied in a typically endothermic pattern. The conductance is high 0·19±0·03 cm2 O2g1 C 1 (n=28) at the lower limit of thermoneutrality. The mean RMR at 18 C (the lowest Ta tested) was 2·63 ± 0·55 cm3 O2g 1 h 1 (n=7) which is 2·6 times that of the resting metabolic rate in the TNZ.  相似文献   

5.
Nutrient and energy content of freshwater fishes   总被引:1,自引:0,他引:1  
The analyses of fresh total body homogenates of 2385 freshwater fishes from 17 species originating in natural waters and aquaculture facilities resulted in average values of 19.1–37.8% dry matter, 13.6–18.3% crude protein, 0.8–18.3% crude fat, 0.16–2.17% nitrogen-free extracts (NFE), 2.2–2.9% nitrogen and 0.39–1.02% phosphorus. The gross energy content ranged from 3.83 to 11.49 MJ/kg. With increasing fat content in the fishes, water content decreased and dry matter content increased. Through this interdependence, a significant correlation was found between dry matter and crude fat and energy content (r2=0.92–0.97). The values of crude protein, crude ash, NFE, nitrogen and phosphorus did not show any significant influence on dry matter content (r2=0.0005–0.46). Based on the significant correlation between dry matter and gross energy (gross energy [MJ/kg]=0.0253 dry matter [%]1.6783), the energy content of freshwater fishes can easily be estimated by the dry matter content in the total body.  相似文献   

6.
We studied the ontogeny of hemoglobin concentration, hematocrit and erythrocyte counts in the Galapagos fur seal ( Arctocephalus galapagoensis , Heller 1904). Two hundred and fifty-three animals were sampled between the ages of 22 d and > 8 yr, of which 46 were adult females. Body mass increased steadily with age from 6.1 ± 1.2 kg in 1-mo-old pups ( n = 27) to 28.5 ± 3.3 kg in adult females. Even adult females increased in mass with age. Hemoglobin (Hb), hematocrit (Hct), and red blood cell (RBC) values all increased in a logarithmic fashion with age up to 2 yr. Blood values for pups were Hct: 35.5 ± 4.1%; Hb: 12.9 ± 1.3 g/dl; RBC: 4.1 ± 0.3·106/μl. Half-year-old fur seals (Hct: 42.1 ± 3.2%; Hb: 15.7 ± 1.3 g/dl; RBC: 4.9 ± 0.5·106/μl; n = 50) were the oldest age group to show significantly lower blood values than adult females ( P < 0.001 for all three parameters). Yearling blood values (Hct: 47.2 ± 3.6%; Hb: 17.3 ± 1.6 g/dl; RBC: 5.6 ± 0.4·106/μl; n = 56) did not differ significantly from those of adult females ( P < 0.32; P < 0.26; P < 0.23, respectively). Blood values of adult females were lower than those of 2-yr-olds (Hct: 49.6 ± 2.4%; Hb: 18.5 ± 1.2 g/dl; RBC: 5.7 ± 0.3·106/μl; n = 31). These differences were significant only for RBCs ( P < 0.003). Up to the age of 1 yr, age was the best predictor for blood values, thereafter mass tended to be a better predictor. Female juveniles between the ages of 150 and 600 d had higher blood values than same-age males. The relationship of blood value development to diving activity is briefly described and the results are compared to values of other marine mammals. Ontogeny is discussed in relation to the development of these blood values in terrestrial mammals.  相似文献   

7.
SUMMARY. 1. The duration of egg incubation ( Y ) in Dinocras cephalotes and Siphonoperla burmeisteri was related to constant temperatures from 4 to 24°C, by the regression equations Y=2382 T 1, 402(r2=0.992, P<0.001) and y= 2683 T −1.667 ( r 2=0.994, P <0.001), respectively. No diapause was observed in either species.
2. Egg incubation in D. cephaloles was slow and took 784.9±92.7 (mean ± SD) degree days between 12 and 20°C. significantly more than in S. burmeisteri (445±76.17 degree days: t = 7.44. d.f.=13, P <0.001).
3. For D. cephalotes hatching occurred at temperatures between 12 and 24°C, and for S . burmeisteri between 8 and 20°C. The mean volume of the eggs of D. cephalotes was about 5 times greater than that of S. burmeisteri and the mean body lengths of the newly-hatched nymphs were 1.13 mm and 0.95 mm respectively.
4. This study shows that the freshwater fauna of northern Fennoscan- dia also contains species with warm stenotherm eggs. D. cephalotes. which is of a Mediterranean origin (Zwick, 1981a), may exist at the limit of its distribution in northern Fennoscandia.  相似文献   

8.
Translocation of NH4+ was studied in relation to the expression of three glutamine synthetase (GS, EC 6.3.1.2) isogenes and total GS activity in roots and leaves of hydroponically grown oilseed rape ( Brassica napus ). The concentration of NH4+ in the stem xylem sap of NO3-fed plants was 0.55–0.70 m M , which was ≈60% higher than that in plants deprived of external nitrogen for 2 days. In NH4+-fed plants, xylem NH4+ concentrations increased linearly both with time of exposure to NH4+ and with increasing external NH4+ concentration. The maximum xylem NH4+ concentration was 8 m M , corresponding to 11% of the nitrogen translocated in the xylem. In the leaf apoplastic solution, the NH4+ concentration increased from 0.03 m M in N-deprived plants to 0.20 m M in N-replete plants. The corresponding values for leaf tissue water were 0.33 and 1.24 m M , respectively. The addition of either NO3 or NH4+ to N-starved plants induced both cytosolic gs isogene expression and GS activity in the roots. In N-replete plants, gs isogene expression and GS activity were repressed, probably due to carbon limitations, thereby protecting the roots against the excessive drainage of photosynthates. Repressed gs isogene expression and GS activity under N-replete conditions caused enhanced NH4+ translocation to the shoots.  相似文献   

9.
Ratios of ammonium (NH4+) to nitrate (NO3) in soils are known to increase during forest succession. Using evidence from several previous studies, we hypothesize that a malfunction in NH4+ transport at the membrane level might limit the persistence of early successional tree species in later seral stages. In those studies, 13N radiotracing was used to determine unidirectional fluxes and pool sizes of NH4+ and NO3 in seedlings of the late-successional species white spruce ( Picea glauca ) and in the early successional species Douglas-fir ( Pseudotsuga menziesii var. glauca ) and trembling aspen ( Populus tremuloides ). At high external NH4+, the two early successional species accumulated excessive NH4+ in the root cytosol, and exhibited high-velocity, low-efficiency (15% to 22%), membrane fluxes of NH4+. In sharp contrast, white spruce had low cytosolic NH4+ accumulation, and lower-velocity but much higher-efficiency (65%), NH4+ fluxes. Because these divergent responses parallel known differences in tolerance and toxicity to NH4+ amongst these species, we propose that they constitute a significant driving force in forest succession, complementing the discrimination against NO3 documented in white spruce (Kronzucker et al. 1997).  相似文献   

10.
Cannibalism among starved groups of juvenile (19–48 days old) vundu catfish Heterobranchus longifilis was 66·5% nocturnal, and its impact under modified day length was proportional to the duration of the dark phase. Shallow depth and high population density decreased the intensity of cannibalism, whereas low density and deeper environments had an opposite effect. The presence of refuges had no significant effect on cannibalism. The maintenance ( R maint) and maximum ( R max) daily food rations (% day−1) of cannibals feeding on live prey were modelled as R maint=3·899 W C0·327 ( r 2=0·684; d.f.=31), and R max=49.545 W C0·321 ( r 2=0·999; d.f.=5), where W C was the body weight of the cannibal (g). The latter model indicated that the impact of a cannibal on a population decreased by a 20% margin each time the cannibal doubled its body weight, and suggested that cannibalism among vundu would become insignificant for cannibals heavier than 30 g. The significance of these findings is discussed within the contexts of vundu aquaculture and of general, conceptual models of the dynamics of cannibalism among fishes.  相似文献   

11.
Barley plants were grown in nutrient solutions, which were maintained at either 0 (-P) or 15 μ M orthophosphate (+P). After 11 days phosphate influx into the intact roots of the -P plants began to increase by comparison with +P plants. During this period differences became apparent between the treatments in absolute growth rates, as well as in the root:shoot ratios. Phosphate influx in the -P plants continued to increase as a function of time, to a maximum value of 2.4 μmol (g fresh wt)-1h-1 at 16 days after germination. This rate was 6 times higher than influx values for +P plants of the same age. During the period of enhanced uptake phosphate was strongly correlated (r2= 0.77) with root organic phosphate concentration. – The enhancement of inorganic phosphate influx into intact roots of -P plants was rapidly reduced by the provision of 15 μ M orthophosphate. Typically, within 4 h of exposure to this concentration of phosphate, influx values fell from 1.80 ± 0.20 to 0.75 ± 0.03 μmol (g fresh wt)-1 h-1, while inorganic phosphate concentrations of the roots increased from 0.12 to 1.15 μmol (g fresh wt)-1 during the same period. Hill plots of the influx data obtained during this period, treating root inorganic phosphate as an inhibitor of influx, gave Hill coefficients close to 2. The rapidity of the reduction of influx associated with increased root inorganic phosphate together with the Hill plot data provide evidence for an allosteric inhibition of influx by internal inorganic phosphate.  相似文献   

12.
Abstract.  Metabolic rate variation with temperature, body mass, gender and feeding status is documented for Glossina morsitans centralis . Metabolic rate [mean ± SE; VCO2= 19.78 ± 3.11 μL CO2 h−1 in males (mean mass = 22.72 ± 1.41 mg) and 27.34 ± 3.86 μL CO2 h−1 in females (mean mass = 29.28 ± 1.96 mg) at 24 °C in fasted individuals] is strongly influenced by temperature, body mass and feeding status, but not by gender once the effects of body mass have been accounted for. A significant interaction between gender and feeding status is seen, similar to patterns of metabolic rate variation documented in Glossina morsitans morsitans . Synthesis of metabolic rate-temperature relationships in G. m. centralis , G. m. morsitans and Glossina pallidipes indicate that biting frequency as well as mortality risks associated with foraging will probably increase with temperature as a consequence of increasing metabolic demands, although there is little evidence for variation among species at present. Furthermore, metabolic rate–body mass relationships appear to be similarly invariant among these species. These data provide important physiological information for bottom-up modelling of tsetse fly population dynamics.  相似文献   

13.
The Achilles tendon of a diverse group of mammals ranging from the mouse (12g) to the rhinoceros (1300kg) scales so that the tendon length varies as tendon diameter.0-931±0.069 ( r =0.983). Tendon length scales as (body mass)0-342±0.028, and tendon diameter scales as (body mass)0-361±0.029. If tendon stress and strain are scale independent, the capacity of the tendon to store elastic strain energy remains proportion to body mass. If tendon stress and strain increase with body mass, energy storage may scale somewhat higher. The scaling of the Achilles tendon is consistent with its role in storing strain energy and different from that of a variety of other tensile skeletal elements which exhibit scale independent length dimensions.  相似文献   

14.
Effect of temperature on swimming performance of sea bass juveniles   总被引:1,自引:0,他引:1  
At four temperatures ( T= 15, 20, 25 and 28° C) swimming performance of Dicentrarchus labrax was significantly correlated with total length (23–43 mm L T); r2=0.623–0.829). The relative critical swimming speed ( RU crit= U crit L T−1), where U crit is the critical swimming speed, was constant throughout the L T range studied. The significant effect of temperature on the relative critical swimming speed was described binomially: RU crit=−0.0323T2+ 1.578 T −10.588 (r2=1). The estimated maximum RU crit (8.69 L T s−1) was achieved at 24.4° C, and the 90% performance level was estimated between 19.3 and 29.6° C.  相似文献   

15.
Abstract. The effect of plant competition on spectral reflectance in the 400–2500 nm wavelength region was determined for 3-month-old and 15-month-old leaves of loblolly pine ( Pinus taeda L.). Strong competition decreased water potentials and Mg concentrations, and increased K in young and old leaves. Also, competition decreased Ca and total chlorophyll in young leaves. As measured with a scanning radiometer, reflectance in young leaves at 551 nm decreased from 20 to 14% as water potentials increased from -2.2 to -0.9 MPa (r2= 0.82). For young and old leaves reflectance at 551 nm decreased from 20 to 10% with increasing total chlorophyll (r2= 0.64). Reflectance decreased slightly with increasing K in young leaves (401 nm, r2= 0.55), and with increasing Mg in old leaves (470 nm, r2= 0.57). Increased visible reflectance under strong competition may have resulted primarily from decreased water potentials. Reflectances were much greater in young versus old leaves in the 750–1300 nm range, and were greater in old rather than young leaves from 1400–2500 nm. Infrared reflectances were not, however, significantly affected by competition.  相似文献   

16.
Standard metabolic rate ( R s) at 2°C of eight East Siberian cod Arctogadus borisovi , caught in West Greenland, body mass of 601.5 ± 147.6 g (mean ± s.D.), was 40.9 ± 5.9 mg O2 kg-1 h-1 and 59.0 ± 6.6mg O2 kg-1 h-1 when extrapolated to a standardized 100 g fish. R s was compared with three other Gadidae, to test the theory of metabolic cold adaptation (MCA). There was no evidence of MCA in the family.  相似文献   

17.
Morphometric measurements were carried out on some of the structural parameters affecting oxygen diffusing capacity in red muscle of 15 specimens of O. niloticus body weight (b.w.) 0.65–812.3 g. Total capillary length and surface area and total morphometric oxygen diffusing capacity in body trunk red muscle had average values of 4792·7 (± 1740.7 s.e.) m, 415·4 (± 157·3 s.e.) cm2 and 0·0213 (± 0·0075 s.e.) ml−1 min−1 cm−2 mmHg respectively. When expressed as functions of b.w. these parameters had scaling values of 1·02, 1·07 and 0·993 respectively. These figures show a slight increase or almost no change in these structural parameters (which affect diffusion of oxygen to mitochondria in red muscle) per unit weight of fish. This should be important as the role of sustained swimming (by red muscle) becomes more important in larger tilapia. Oxygen diffusion distances were short [3·11 (±0·16 s.e.) μm] which facilitates diffusion of oxygen to mitochondria. The scaling value for oxygen diffusion distances of 0·067 (with respect to body weight) shows a slight increase in this parameter with development. This value is significantly different from zero.  相似文献   

18.
The morphological development and allometric growth patterns in the juvenile spotted seahorse Hippocampus kuda were studied under hatchery rearing conditions. Newborn spotted seahorses [mean ± s.d . standard length ( L S) 9·33 ± 0·79 mm] were raised till the age of 124 days (119·35 ± 6·04 mm). Growth was characterized by three stages with two inflexion points occurring at day 21 and 76. The mean growth rates in the first, second and third stages were 0·68, 1·16 and 0·71 mm day−1, respectively. The growth rate was most rapid in the second stage and was probably influenced by a behavioural shift from pelagic to benthic form. The mass ( M ) and L S relationship was exponential ( M = 7·14 × 10−6 L S2·76), but the slope, b = 2·76, reflected negative allometric growth. Sexes could be distinguished at c. 110 days, and the sex ratio was unbiased. The L S in males and females did not differ significantly. Morphological stageing series is proposed, which divides H. kuda juvenile development into eight stages based on the development of coronet, cheek and eye spines, keel and pigmentation. The morphometric ratios for all the body parts, except trunk length, showed considerable changes at a transition point occurring at c. 25 mm L S. The high proportional growth in head length, head depth, pectoral fin base length, dorsal fin base length, snout length, snout depth and eye diameter at the initial stages, and the abrupt increase in tail length only after the first 2 weeks, possibly reflect development priorities during early development where important organs are being developed first for the enhancement of juvenile survival.  相似文献   

19.
Field metabolic rates (FMR) and activity patterns of black-browed albatrosses Thalassarche melanophrys were measured while at sea and on nest during the incubation stage at Kerguelen Island, southwestern Indian Ocean. Activity-specific metabolic rates of five albatrosses at sea (FMRat-sea) were measured using doubly labeled water (DLW), and by equipping birds with wet-dry activity data loggers that determined when birds were in flight or on the water. The metabolic rates of four birds incubating their eggs (FMRon-nest) were also measured using DLW. The mean±SD FMRat-sea of albatrosses was 611±96 kJ kg−1 d−1 compared to FMRon-nest of 196±52 kJ kg−1 d−1. While at sea, albatrosses spent 52.9±8.2% (N=3) of their time in flight and they landed on the water 41.2±13.9 times per day. The FMR of black-browed albatrosses appear to be intermediate to that of three other albatross species. Based on at-sea activity, the power requirement of flight was estimated to be 8.7 W kg−1 (or 4.0×predicted BMR), which is high compared to other albatross species, but may be explained by the high activity levels of the birds when at sea. The FMRat-sea of albatrosses, when scaled with body mass, are lower than other seabirds of similar body size, which probably reflects the economical nature of their soaring flight.  相似文献   

20.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号