共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrew R Cross 《BBA》2004,1657(1):1-22
The NADPH oxidase is an electron transport chain in “professional” phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established. 相似文献
2.
The human genome is continuously exposed to such potentially deleterious agents as the highly reactive molecules known as reactive oxygen species (ROS). ROS include superoxide anions (O(2)(-)) and hydrogen peroxide (H(2)O(2)). Over the last decade, the ROS-generating NADPH oxidases (NOXs) have been recognized as one of the main sources of ROS production in numerous human cell types. In addition to regulating normal physiological redox-dependent processes, the NOXs are involved in cellular oxidative stress. In contrast to the other NOXs, the NADPH oxidase NOX4 exists in the immediate environment of the nucleus. There is accumulating evidence for the involvement of NOX4-derived ROS in genomic instability as well as in cancer and other inflammation-related diseases. We recently showed that NOX4 plays a critical role in oncogenic Ras-induced DNA damage. Here we reflect upon the growing awareness of NOX4, review its role in inducing genomic instability, and call attention to its possible role in nuclear redox-sensitive mechanisms underlying DNA-damage signaling and repair. 相似文献
3.
Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes. 相似文献
4.
NOX3, a superoxide-generating NADPH oxidase of the inner ear 总被引:12,自引:0,他引:12
Bánfi B Malgrange B Knisz J Steger K Dubois-Dauphin M Krause KH 《The Journal of biological chemistry》2004,279(44):46065-46072
Reactive oxygen species (ROS) play a major role in drug-, noise-, and age-dependent hearing loss, but the source of ROS in the inner ear remains largely unknown. Herein, we demonstrate that NADPH oxidase (NOX) 3, a member of the NOX/dual domain oxidase family of NADPH oxidases, is highly expressed in specific portions of the inner ear. As assessed by real-time PCR, NOX3 mRNA expression in the inner ear is at least 50-fold higher than in any other tissues where its expression has been observed (e.g. fetal kidney, brain, skull). Microdissection and in situ hybridization studies demonstrated that NOX3 is localized to the vestibular and cochlear sensory epithelia and to the spiral ganglions. Transfection of human embryonic kidney 293 cells with NOX3 revealed that it generates low levels of ROS on its own but produces high levels of ROS upon co-expression with cytoplasmic NOX subunits. NOX3-dependent superoxide production required a stimulus in the absence of subunits and upon co-expression with phagocyte NADPH oxidase subunits p47(phox) and p67(phox), but it was stimulus-independent upon co-expression with colon NADPH oxidase subunits NOX organizer 1 and NOX activator 1. Pre-incubation of NOX3-transfected human embryonic kidney 293 cells with the ototoxic drug cisplatin markedly enhanced superoxide production, in both the presence and the absence of subunits. Our data suggest that NOX3 is a relevant source of ROS generation in the cochlear and vestibular systems and that NOX3-dependent ROS generation might contribute to hearing loss and balance problems in response to ototoxic drugs. 相似文献
5.
Molecular and Cellular Biochemistry - Cerium oxide nanoparticles, also known as nanoceria, possess antioxidative and anti-inflammatory activities in animal models of inflammatory disorders, such as... 相似文献
6.
NOX1, an NADPH oxidase expressed predominantly in colon epithelium, shows a high degree of similarity to the phagocyte NADPH oxidase. However, superoxide generation by NOX1 has been difficult to demonstrate. Here we show that NOX1 generates superoxide when co-expressed with the p47(phox) and p67(phox) subunits of the phagocyte NADPH oxidase but not when expressed by itself. Since p47(phox) and p67(phox) are restricted mainly to myeloid cells, we searched for their homologues and identified two novel cDNAs. The mRNAs of both homologues were found predominantly in colon epithelium. Differences between the homologues and the phagocyte NADPH oxidase subunits included the lack of the autoinhibitory domain and the protein kinase C phosphorylation sites in the p47(phox) homologue as well as the absence of the first Src homology 3 domain and the presence of a hydrophobic stretch in the p67(phox) homologue. Co-expression of NOX1 with the two novel proteins led to stimulus-independent high level superoxide generation. Stimulus dependence of NOX1 was restored when p47(phox) was used to replace its homologue. In conclusion, NOX1 is a superoxide-generating enzyme that is activated by two novel proteins, which we propose to name NOXO1 (NOX organizer 1) and NOXA1 (NOX activator 1). 相似文献
7.
8.
DeCoursey TE 《FEBS letters》2003,555(1):57-61
Leukocytes kill microbes by producing reactive oxygen species, using a multi-component enzyme complex, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Electrons pass from intracellular NADPH through a redox chain within the enzyme, to reduce extracellular O2 to O2-. Electron flux is electrogenic, and rapidly depolarizes the membrane potential. Excessive depolarization can turn off electron transport by self-inhibition, but this is prevented by proton flux that balances the electron flux. Although the membrane potential depolarizes by approximately 100 mV during the respiratory burst (NADPH oxidase activity), NADPH oxidase activity is independent of voltage in this range, which permits optimal function and prevents self-inhibition. 相似文献
9.
10.
11.
Bánfi B Tirone F Durussel I Knisz J Moskwa P Molnár GZ Krause KH Cox JA 《The Journal of biological chemistry》2004,279(18):18583-18591
NADPH oxidase 5 (NOX5) is a homologue of the gp91(phox) subunit of the phagocyte NADPH oxidase. NOX5 is expressed in lymphoid organs and testis and distinguished from the other NADPH oxidases by its unique N terminus, which contains three canonical EF-hands, Ca(2+)-binding domains. Upon heterologous expression, NOX5 was shown to generate superoxide in response to intracellular Ca(2+) elevations. In this study, we have analyzed the mechanism of Ca(2+) activation of NOX5. In a cell-free system, Ca(2+) elevations triggered superoxide production by NOX5 (K(m) = 1.06 microm) in an NADPH- and FAD-dependent but cytosol-independent manner. That result indicated a role for the N-terminal EF-hands in NOX5 activation. Therefore, we generated recombinant proteins of NOX5 N terminus and investigated their interactions with Ca(2+). Flow dialysis experiments showed that NOX5 N terminus contained four Ca(2+)-binding sites and allowed us to define the hitherto unidentified fourth, non-canonical EF-hand. The EF-hands of NOX5 formed two pairs: the very N-terminal pair had relatively low affinity for Ca(2+), whereas the more C-terminal pair bound Ca(2+) with high affinity. Ca(2+) binding caused a marked conformation change in the N terminus, which exposed its hydrophobic core, and became able to bind melittin, a model peptide for calmodulin targets. Using a pull-down assay, we demonstrate that the regulatory N terminus and the catalytic C terminus of NOX5 interact in a Ca(2+)-dependent way. Our results indicate that the Ca(2+)-induced conformation change of NOX5 N terminus led to enzyme activation through an intra-molecular interaction. That represents a novel mechanism of activation among NAD(P)H oxidases and Ca(2+)-activated enzymes. 相似文献
12.
The membrane fraction of Bacterionema matruchotii contains an electron transport chain with oxidizing activity for NADH and succinate. Respiration was inhibited by KCN, 2-heptyl-4-hydroxyquinoline-N-oxide, UV light irradiation and CO. UV light irradiation, analysis of membrane extracts, and reconstitution of respiration in UV light treated membranes suggested that respiration is mediated by a menaquinone derivative. The membranes contained cytochromes a, b, and c. Inhibition studies and the effect of KCN and CO on the cytochrome spectrum indicated the presence of an a+a3 cytochrome oxidase and cytochrome o. The membrane fraction from cells grown under O2-limiting conditions contained nitrate reductase activity. In B. matruchotii, electron transport is coupled to oxidative phosphorylation as judged by the effects of substrates and inhibitors on the intracellular ATP concentration. 相似文献
13.
Superoxide generation by NADPH oxidase 5 (NOX5) is regulated by Ca(2+) through intramolecular activation of the C-terminal catalytic domain by the EF-hand-containing N-terminal regulatory domain. The C terminus contains a consensus calmodulin-binding domain (CaMBD), which, however, is not the binding site of the N-terminal regulatory domain. Here we show by pull down, cross-linking, fluorimetry and by enzymatic assays, that calmodulin binds to this CaMBD in a Ca(2+)-dependent manner, changes its conformation and increases the Ca(2+) sensitivity of the N terminus-regulated enzymatic activity. This mechanism represents an additional sophistication in the regulation of superoxide production by NOX5. 相似文献
14.
Ahluwalia J 《Biochemical and biophysical research communications》2008,368(3):656-661
Electron transport by the human neutrophil NADPH oxidase is an important microbicidal weapon for phagocytes. The electron current (Ie) generated by the neutrophil NADPH oxidase is poorly characterised due to the lack of appropriate electrophysiological data. In this study, I fully characterise the neutrophil generated Ie when the NADPH oxidase is activated by NADPH and GTPγS. The neutrophil Ie was markedly voltage-dependent in the entire voltage range in comparison to those electron currents measured after chloride was removed from the external bath solution. The difference in Ie measured in chloride free conditions was not due to a change in the activation kinetics of voltage-gated proton channels. The Ie depolarises the neutrophil plasma membrane at a rate of 2.3 V s−1 and this depolarisation was opposed when voltage-gated proton channels are activated. 3 mM ZnCl2 depolarised the membrane potential to +97.8 ± 2.5 mV (n = 4), and this depolarisation was abolished after NADPH oxidase inhibition. 相似文献
15.
16.
Silvia Sorce Mario Nuvolone Annika Keller Jeppe Falsig Ahmet Varol Petra Schwarz Monika Bieri Herbert Budka Adriano Aguzzi 《PLoS pathogens》2014,10(12)
Prion infections cause neurodegeneration, which often goes along with oxidative stress. However, the cellular source of reactive oxygen species (ROS) and their pathogenetic significance are unclear. Here we analyzed the contribution of NOX2, a prominent NADPH oxidase, to prion diseases. We found that NOX2 is markedly upregulated in microglia within affected brain regions of patients with Creutzfeldt-Jakob disease (CJD). Similarly, NOX2 expression was upregulated in prion-inoculated mouse brains and in murine cerebellar organotypic cultured slices (COCS). We then removed microglia from COCS using a ganciclovir-dependent lineage ablation strategy. NOX2 became undetectable in ganciclovir-treated COCS, confirming its microglial origin. Upon challenge with prions, NOX2-deficient mice showed delayed onset of motor deficits and a modest, but significant prolongation of survival. Dihydroethidium assays demonstrated a conspicuous ROS burst at the terminal stage of disease in wild-type mice, but not in NOX2-ablated mice. Interestingly, the improved motor performance in NOX2 deficient mice was already measurable at earlier stages of the disease, between 13 and 16 weeks post-inoculation. We conclude that NOX2 is a major source of ROS in prion diseases and can affect prion pathogenesis. 相似文献
17.
Yasuda M Kato S Yamanaka N Iimori M Utsumi D Kitahara Y Iwata K Matsuno K Amagase K Yabe-Nishimura C Takeuchi K 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(10):G1133-G1142
Although NADPH oxidase 1 (NOX1) has been shown to be highly expressed in the gastrointestinal tract, the physiological and pathophysiological roles of this enzyme are not yet fully understood. In the present study, we investigated the role of NOX1 in the pathogenesis of intestinal mucositis induced by the cancer chemotherapeutic agent 5-fluorouracil (5-FU) in mice. Intestinal mucositis was induced in Nox1 knockout (Nox1KO) and littermate wild-type (WT) mice via single, daily administration of 5-FU for 5 days. In WT mice, 5-FU caused severe intestinal mucositis characterized by a shortening of villus height, a disruption of crypts, a loss of body weight, and diarrhea. In Nox1KO mice, however, the severity of mucositis was significantly reduced, particularly with respect to crypt disruption. The numbers of apoptotic caspase-3- and caspase-8-activated cells in the intestinal crypt increased 24 h after the first 5-FU administration but were overall significantly lower in Nox1KO than in WT mice. Furthermore, the 5-FU-mediated upregulation of TNF-α, IL-1β, and NOX1 and the production of reactive oxygen species were significantly attenuated in Nox1KO mice compared with that in WT mice. These findings suggest that NOX1 plays an important role in the pathogenesis of 5-FU-induced intestinal mucositis. NOX1-derived ROS production following administration of 5-FU may promote the apoptotic response through upregulation of inflammatory cytokines. 相似文献
18.
Regulation of the photosynthetic electron transport chain 总被引:19,自引:1,他引:19
The regulation of electron transport between photosystems II and I was investigated in the plant Silene dioica L. by means of measurement of the kinetics of reduction of P700 following a light-to-dark transition. It was found that, in this species, the rate constant for P700 reduction is sensitive to light intensity and to the availability of CO2. The results indicated that at 25 °C the rate of electron transport is down-regulated by approximately 40–50% relative to
the maximum rate achievable in saturating CO2 and that this down-regulation can be explained by regulation of the electron transport chain itself. Measurements of the
temperature sensitivity of this rate constant indicated that there is a switch in the rate-limiting step that controls electron
transport at around 20 °C: at higher temperatures, CO2 availability is limiting; at lower temperatures some other process regulates electron transport, possibly a diffusion step
within the electron transport chain itself. Regulation of electron transport also occurred in response to drought stress and
sucrose feeding. Measurements of non-photochemical quenching of chlorophyll fluorescence did not support the idea that electron
transport is regulated by the pH gradient across the thylakoid membrane, and the possibility is discussed that the redox potential
of a stromal component may regulate electron transport.
Received: 4 March 1999 / Accepted: 25 May 1999 相似文献
19.
Biological roles for the NOX family NADPH oxidases 总被引:2,自引:0,他引:2
Nauseef WM 《The Journal of biological chemistry》2008,283(25):16961-16965
20.
Si J Behar J Wands J Beer DG Lambeth D Chin YE Cao W 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(1):G174-G183
We have shown that NADPH oxidase NOX5-S is overexpressed in Barrett's esophageal adenocarcinoma (EA) cells and may contribute to the progression from Barrett's esophagus (BE) to EA presumably by increasing cell proliferation and decreasing apoptosis (Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W. J Biol Chem 281: 20368-20382, 2006). The mechanism(s) of NOX5-S overexpression in EA, however, is not fully understood. In SEG1 EA cells we found that acid treatment significantly increased platelet-activating factor (PAF) production, which in turn markedly increased NOX5-S expression and hydrogen peroxide (H(2)O(2)) production. Knockdown of NOX5-S by NOX5-S small interfering RNA (siRNA) blocked PAF-dependent H(2)O(2) production. PAF-dependent induction of NOX5-S expression and H(2)O(2) production were significantly decreased by the MAPK kinase 1 inhibitor PD-98059, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by STAT5 downregulation with STAT5 siRNA. PAF significantly increased the phosphorylation of ERK1/2 MAPK, cPLA(2), and STAT5. Using inhibitors, we demonstrated that PAF-induced STAT5 phosphorylation depends on activation of ERK1/2 MAPK and cPLA(2), whereas PAF-induced cPLA(2) phosphorylation was associated with activation of ERK1/2 MAPK. Given that STAT5 bound to the c-sis-inducible element (TTCTGGTAA) of the NOX5-S promoter, overexpression of STAT5 significantly increased NOX5-S promoter activity. We conclude that acid-induced NOX5-S expression and H(2)O(2) production is mediated in part by production of PAF in SEG1 EA cells, and that PAF-induced increase in NOX5-S expression depends on sequential activation of ERK MAP kinases, cPLA(2), and STAT5 in these cells. 相似文献