首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

2.
A cryomicroscope was used to observe changes in the appearance of day 6 1 2 to 7 1 2 cattle embryos during cooling and warming in 1.4M glycerol/PBS. Embryos were cooled at various rates between 0.2 and 25 degrees C/min to temperatures between -25 and -60 degrees C and then cooled rapidly ( approximately 250 degrees C/min) to temperatures below -140 degrees C. The volume of the embryos calculated from the cross-sectional area during slow cooling decreased at -25 degrees C to about 50% of the isotonic volume. Fracture planes could be observed in the extracellular ice matrix surrounding the embryos after rapid cooling to approximately -140 degrees C. The fracture planes often touched the zona pellucida and sometimes caused cracks in the zona. Cracks in the zona pellucida were observed more often after rapid cooling from temperatures between -20 to -35 degrees C (9 13 ) than from temperatures between -36 to -60 degrees C (2 7 ). When embryos were warmed rapidly ( approximately 250 degrees C/min) from temperatures below -140 degrees C, no change was observed in the appearance of either the embryo or its surroundings except the melting of the extracellular ice. However, when embryos were warmed slowly (2 or 5 degrees C/min), a series of events was observed; first, at approximately -70 degrees C the cytoplasm and the extracellular space gradually darkened and reached maximum darkness at approximately -55 degrees C. Then, on continued slow warming, the dark material gradually disappeared and finally the large extracellular ice crystals melted.  相似文献   

3.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

4.
Deep freezing of sheep embryos.   总被引:6,自引:0,他引:6  
Sheep embryos, collected 1-8 days after oestrus, were placed in Dulbecco's phosphate-buffered saline medium (PBS). After treatment, the viability of the embryos was tested by temporary transfer to ligated rabbit oviducts. In Exp. 1, Days 5-8 embryos survived for at least 15 min at 0 degrees C in the presence of 1-5 M-DMSO. In Exp. 2, 12/14 Days 5-8 embryos survived after being frozen in 1-5 M-DMSO at 0-3 degrees C/min to temperatures ranging between-15 degrees and -60 degrees C and then thawed at 12 degrees C/min. In Exp. 3, Days 5-8 embryos were frozen in 1-5 M-DMSO at 0-3 degrees C/min to below-65 degrees C before being transferred to liquid nitrogen (-196 degrees C), and stored for 12 hr to 1 month. The embryos were thawed at 3 degrees C/min, 12 degrees C/MIN or 360 degrees C/min and, after transfer to rabbit oviducts, 0/4, 10/36 and 1/4, respectively, developed normally. The 11 embryos which were considered normal when recovered from the rabbit oviducts plus 1 slightly retarded embryo were transferred to 7 recipient ewes. Four ewes subsequently lambed, producing 5 lambs. In addition, 8 embryos were transferred to 4 ewes directly after thawing. Three of these ewes subsequently lambed, producing 3 lambs.  相似文献   

5.
Mazur P  Pinn IL  Kleinhans FW 《Cryobiology》2007,55(2):158-166
The formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration. Then, the cell is cooled rapidly to -70 degrees C or below. This approach, often called interrupted rapid cooling, is the subject of this paper. Mouse oocytes were suspended in 1.5M ethylene glycol (EG)/PBS, rapidly cooled (50 degrees C/min) to -25 degrees C and held for 5, 10, 20, 30, or 40 min before being rapidly cooled (50 degrees C/min) to -70 degrees C. In cells held for 5 min, IIF (flashing) occurred abruptly during the second rapid cool. As the holding period was increased to 10 and 20 min, fewer cells flashed during the cooling and more turned black during warming. Finally, when the oocytes were held 30 or 40 min, relatively few flashed during either cooling or warming. Immediately upon thawing, these oocytes were highly shrunken and crenated. However, upon warming to 20 degrees C, they regained most of their normal volume, shape, and appearance. These oocytes have intact cell membranes, and we refer to them as survivors. We conclude that 30 min at -25 degrees C removes nearly all intracellular freezable water, the consequence of which is that IIF occurs neither during the subsequent rapid cooling to -70 degrees C nor during warming.  相似文献   

6.
In vitro and in vivo survival of in vitro-derived 2- to 4-cell cat embryos following cryopreservation was examined. Prefreeze 1- vs 2-step cryoprotectant exposure (Experiment 1) and warming method (Experiment 2) on zona pellucida damage and development in vitro were compared. To determine viability in vivo, frozen/thawed embryos were cultured in vitro to the morula/early blastocyst stage and transferred to synchronous recipients (Experiment 3). At 24 to 26 h after IVF, embryos were cryopreserved in 1.4 M propanediol (Pr) + 0.125 M sucrose (Su) by cooling at 0.3 degrees C/min from -6 degrees C to -30 degrees C and storing in liquid nitrogen. Autologous embryos were cultured in vitro for 7 d. After warming for 5 sec in air and 10 sec at 37 degrees C in water (Experiments 1 to 3), or at room temperature air (22 degrees C; Experiment 2), the cryoprotectant was removed and embryos were cultured in vitro for 6 d (Experiments 1 and 2). Development was assessed after staining by counting cell numbers/embryo and determining the percentages at the 2- to 4-cell (nonsurvivor), pre (5 to 15), early (16 to 32), mid (33 to 50), late (>50) morula or blastocyst stages. Post-thaw development to late morula/blastocyst after 1-step exposure (68%, 15 min Pr + Su) was higher (P< 0.05) than that after 2-step exposure (36%, 15 min Pr and 15 min Pr + Su). Both warming methods produced similar percentages of embryos with damaged zonae (13 to 15%) and equivalent development to morula/blastocyst (64 to 69%). Development in vitro to early morula/blastocyst of frozen embryos with intact zonae was similar to that of nonfrozen embryos. Following cryopreservation, most 2- to 4-cell cat embryos retained their capability for in vitro development to morula/blastocyst, and in vivo viability was demonstrated by the birth of 3 live kittens to 2 of 4 recipients following the transfer of 58 embryos.  相似文献   

7.
Adequate cell dehydration is the precipitating element in the successful cryopreservation of plant cells and organs. This could be achieved by using different cooling rates, transfer temperatures and cryoprotectants. Experiments were performed to determine these critical points in the freeze preservation procedure of Cannabis sativa (L.) suspension cultures. The explants were frozen at a cooling rate of 2 degrees C/min, while the transfer temperatures were -10 degrees C, -20 degrees C, -30 degrees C, -40 degrees C and -50 degrees C. The applied cryoprotectants were the DMSO, glycerol, proline and PEG in different concentration. The highest viability (58%) was obtained by using 10% DMSO and at -10 degrees C transfer temperature. The optimum transfer temperature varied remarkably by different cryoprotectant concentrations indicating the importance of their interactions.  相似文献   

8.
The dynamics of the internalization of photoaffinity-labelled insulin-receptor complexes was investigated in isolated rat adipocytes by using tryptic proteolysis to probe both the orientation and cellular location of the labelled complexes. In cells that were labelled at 16 degrees C and not prewarmed, 150 micrograms of trypsin/ml rapidly degraded the labelled 125 kDa insulin-receptor subunit into a major proteolytic fragment of 70 kDa and minor amounts of 90- and 50-kDa fragments. With milder trypsin treatment conditions (100 micrograms of trypsin/ml, 15 s at 37 degrees C), the 90 kDa peptide (different from the 90 kDa beta-subunit of the insulin receptor) appeared as a major intermediate proteolytic product, but this species was rapidly and completely converted into the 70- and 50-kDa fragments with continued exposure to trypsin, such that it did not accumulate to appreciable amounts in cells that were not prewarmed before trypsin exposure. By contrast, trypsin treatment of cells prewarmed to 37 degrees C for various times showed that: first, a proportion of the labelled 125 kDa receptors was internalized (became trypsin-insensitive); secondly, the 90 kDa tryptic peptide was formed in large amounts, with proportionate decreases occurring in the amounts of the 70- and 50-kDa tryptic peptides. The increased accumulation of the 90 kDa tryptic peptide from cells preincubated at 37 degrees C, but not at 16 degrees C, indicated that trypsin cleavage sites within the 90 kDa segment of the insulin-receptor alpha-subunit that were exposed at 16 degrees C were made inaccessible by incubation at 37 degrees C, a finding that is consistent with generation of a cryptic domain of the receptor subunit. The tryptic generation of the 90 kDa peptide at 37 degrees C was rapid, becoming half-maximal in 4.4 +/- 0.6 min and maximal in 15-20 min, preceded the intracellular accumulation of labelled receptors (half-maximal in 12.6 +/- 0.7 min and maximal in 30-40 min), was highly correlated with receptor internalization, and was not observed in cultured IM-9 lymphocytes, a cell line in which photolabelled insulin receptors are primarily lost by shedding into the incubation media. These results show that, in adipocytes incubated at 37 degrees C, rapid masking of a previously (at 16 degrees C) accessible domain of the insulin-receptor alpha-subunit occurs and that this dynamic process happens at an early stage in the internalization of insulin-receptor complexes.  相似文献   

9.
Rall WF  Meyer TK 《Theriogenology》1989,31(3):683-692
Although fracture damage to the zonae pellucidae and blastomeres is frequently observed after the cryopreservation of mammalian embryos, little is known of the mechanism by which this occurs. The incidence of damage to zonae was measured when bovine ova with normal zonae were frozen in straws or glass test tubes by standard embryo cryopreservation procedures that yield high rates of survival. Ova were examined for zona damage after warming by procedures that ought to produce little or no thermal stress (slow warming in 20 degrees C air) or high levels of stress (rapid warming in liquid baths). Ova frozen in straws exhibited no zona damage after slow warming at 150 degrees C/min in air (n = 206). However, the incidence of zona damage increased when the straws were warmed rapidly in 20 degrees C (n = 157) or 36 degrees C (n = 159) water (17 and 24%, respectively). Ova in straws warmed rapidly in nonaqueous liquids (ethylene glycol, or silicone oil) exhibited lower rates of zona damage (2 to 5%). Ova frozen in glass tubes exhibited a much higher incidence of zona damage than those frozen in straws, regardless of the warming conditions. Thus, 30% of 114 ova exhibited damage when tubes were warmed slowly at 25 degrees C/min in air, while 54% of 98 ova showed zona damage when tubes were warmed rapidly at 500 degrees C/min in 36 degrees C water. These results are consistent with the view that zona damage is associated with thermally-induced fracturing of the suspension during rapid changes of temperature.  相似文献   

10.
Cow embryos between day 6.5 and 9 were frozen in 1.5M DMSO in PBS at 2 degrees C/min from seeding to -25 degrees C before being plunged into liquid nitrogen directly or after 10 min at -25 degrees C. Cooling rate from 20 degrees C to -5 degrees C was 9 degrees C/min. Seeding was induced automatically at -5 degrees C by injection of liquid nitrogen vapour. Embryos were subsequently thawed by direct transfer to water at 20 degrees C (group I) or at 37 degrees C (group II). Survival was assessed by culture in vitro and by transfer. In group I, 35.7% were degenerated after thawing (compared to 35.4% in group II). Survival rate after culture in vitro for 24h was not significantly different (48.3% vs 42.8%) and hatching rate after 96h culture was quite similar (33.3% vs 34.4%). In group II, four pregnancies were obtained from 10 embryos transferred. Time at -25 degrees C did not improve the results. Automatic seeding did not impair survival. These results show that the quality of the embryo is the determinant factor for survival after freezing and that the plastic straw is the most suitable vessel for freezing, storage and transfer of embryos.  相似文献   

11.
After removal of the scrotal skin, one testis of each of 12 adult anaesthetized rams was kept at 33 degrees C for 60 min, then heated either to 36 degrees C for 60 min and then to 39 degrees C for 60 min, or to 36 degrees C for 120 min and then returned to 33 degrees C for 100 min, while the other testis was maintained at 33 degrees C. Flow of testicular blood plasma was measured every 10 min using the technique of dilution of sodium p-aminohippurate. When the temperature of the testis was raised to 36 degrees C, flow of blood plasma gradually increased and reached a higher than normal rate at the end of the first hour, without any further increase during the second hour. The increase in mean flow rate was 25.8 +/- 3.4% (mean +/- SEM) during the second hour at 36 degrees C, and 77.1 +/- 12.8% during the hour at 39 degrees C, compared with the respective values at 33 degrees C. No significant changes were seen in testicular lymph flow determined by collection for 10 min in four rams at 36 degrees C (60 min) and then at 39 degrees C (60 min). These results are different from those from earlier studies in which total blood flow was unchanged when the scrotum and testes were heated. The difference could be related either to lack of heating of the scrotum or to the lower temperatures used in the present study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Hochi S  Semple E  Leibo SP 《Theriogenology》1996,46(5):837-847
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling.  相似文献   

13.
Mouse morulae were exposed to solutions containing 30-50% of permeable agents (ethylene glycol, glycerol, propylene glycol) in modified phosphate-buffered saline (PB1 medium) at 20 degrees C for 20 min. A high percentage of them developed to expanded blastocysts in culture, after exposure to 30% and 40% ethylene glycol (98 and 84%, respectively), or 30% glycerol (88%). Ethylene glycol and glycerol were diluted to 30 and 40% with PB1 medium or with PB1 containing 30% Ficoll or 30% Ficoll + 0.5 M-sucrose, immersed in liquid nitrogen in straws and warmed in 20 degrees C water. Solutions containing 40% of a permeable agent with Ficoll did not crystallize during cooling or warming. Mouse morulae were exposed to 40% ethylene glycol in PB1 medium containing 30% Ficoll (EF) or PB1 medium + 30% Ficoll + 0.5 M-sucrose (EFS) for 5-20 min at 20 degrees C. EFS solution was non-toxic to the embryos during 5 min of exposure. When embryos, equilibrated in EFS solution for 2 or 5 min at 20 degrees C, were vitrified at -196 degrees C and were warmed rapidly, nearly all embryos developed in culture (97-98%), and 51% developed to live young at term after transfer. This method, which results in virtually no decrease in embryonic viability, may be of practical use for embryo preservation.  相似文献   

14.
One widely accepted explanation of injury from slow freezing is that damage results when the concentration of electrolyte reaches a critical level in partly frozen solutions during freezing. We have conducted experiments on human red cells to further test this hypothesis. Cells were suspended in phosphate-buffered saline containing 0-3 M glycerol, held for 30 min at 20 degrees C to permit solute permeation, and frozen at 0.5 or 1.7 degrees C/min to various temperatures between -2 and -100 degrees C. Upon reaching the desired minimum temperature, the samples were warmed at rates ranging from 1 to 550 degrees C/min and the percent hemolysis was determined. The results for a cooling rate of 1.7 degrees C/min indicate the following: (a) Between 0.5 and 1.85 M glycerol, the temperature yielding 50% hemolysis (LT50) drops slowly from -18 to -35 degrees C. (b) The LT50's over this range of concentrations are relatively independent of warming rate. (c) With glycerol concentrations of 1.95 and 2.0 M, the LT50 drops abruptly to -60 degrees C and to below -100 degrees C, respectively, and becomes dependent on warming rate. The LT50 is lower with slow warming at 1 degree C/min than with rapid. With still higher concentrations (2.5 and 3.0 M), there is no LT50, i.e., more than 50% of the cells survive freezing to-100 degrees C. Results for cooling at 0.5 degrees C/min in 2 M glycerol were similar except that the LT50s were some 10-20 degrees C higher. A companion paper (Rall et al., Biophys. J. 23:101-120, 1978) examines the relation between survival and the concentrations of salts produced during freezing.  相似文献   

15.
Kinetics of intracellular ice formation (IIF) for isolated rat hepatocytes was studied using a cryomicroscopy system. The effect of the cooling rate on IIF was investigated between 20 and 400 degrees C/min in isotonic solution. At 50 degrees C/min and below, none of the hepatocytes underwent IIF; whereas at 150 degrees C/min and above, IIF was observed throughout the entire hepatocyte population. The temperature at which 50% of hepatocytes showed IIF (50TIIF) was almost constant with an average value of -7.7 degrees C. Different behavior was seen in isothermal subzero holding temperatures in the presence of extracellular ice. 50TIIF from isothermal temperature experiments was approximately -5 degrees C as opposed to -7.7 degrees C for constant cooling rate experiments. These experiments clearly demonstrated both the time and temperature dependence of IIF. On the other hand, in cooling experiments in the absence of extracellular ice, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously) suggesting the involvement of the external ice in the initiation of IIF. The effect of dimethyl sulfoxide (Me2SO) on IIF was also quantified. 50TIIF decreased from -7.7 degrees C in the absence of Me2SO to -16.8 degrees C in 2.0 M Me2SO for a cooling rate of 400 degrees C/min. However, the cooling rate (between 75 and 400 degrees C/min) did not significantly affect 50TIIF (-8.7 degrees C) in 0.5 M Me2SO. These results suggest that multistep protocols will be required for the cryopreservation of hepatocytes.  相似文献   

16.
Pegg DE 《Cryobiology》2002,44(1):46-53
This paper reports the cryopreservation of an immortalized human endothelial cell line (ECV304), either as a single cell suspension or as a confluent layer on microcarrier beads. Cell suspensions were exposed to 10% w/w dimethyl sulfoxide in a high-potassium solution (CPTes) at 0 degrees C. The cells were then cooled to -60 degrees C at controlled rates between 0.3 and 500 degrees C/min and stored below -180 degrees C. Samples were thawed in a 37 degrees C water bath and the cryoprotectant was removed by serial dilution at 22 degrees C over 6 min. The recovery of cell suspensions was assayed by culturing aliquots in 24-well plates for 7-9 days and counting the number of colonies that contained >25 cells. Maximum survival was 45-50% at cooling rates of 0.3, 1.0, and 10 degrees C/min, but decreased to 20% at 50 degrees C/min and to <1% at 500 degrees C/min. Biosilon microcarrier beads were used for the attached cells. Confluent beads were cryopreserved by exactly the same technique and cell function was assayed by measuring active amino acid (leucine) transport at 37 degrees C. Control, untreated confluent beads gave approximately 73% of control uptake and negative controls (frozen without cryoprotectant) gave approximately 4% uptake. The cells attached to beads showed percentage uptakes that were numerically similar to the survival of cells in suspension at cooling rates between 10 and 500 degrees C/min, but at lower cooling rates the recovery of attached cells increased to 70% at 1 degrees C/min and to 85% at 0.3 degrees C/min. These results indicate a marked difference in the effect of cooling rate on ECV304 cells depending upon attachment.  相似文献   

17.
T Kojima  T Soma  N Oguri 《Cryobiology》1987,24(3):247-255
The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.  相似文献   

18.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF.  相似文献   

19.
T Ono  M T Suzuki  H Narita  F Cho 《Jikken dobutsu》1989,38(4):293-296
This report dealt with the change of body temperature (rectal temperature) in the newborn cynomolgus monkeys (Macaca fascicularis) with a view to take it as an index for their health conditions. The body temperatures of 183 newborn babies which were well cared for by their mothers was 33.0 to 37.7 degrees C about 10 hr after birth. On the other hand, the body temperatures of 21 newborn babies which were not well cared for by their mothers was very low, ranging from 24.1 to 34.8 degrees C. In five newborn monkeys which were well cared for, the body temperature averaged about 36 degrees C just after birth and then declined rapidly by 32 to 33 degrees C at 40 to 50 minutes after birth. Then it gradually began to rise, reaching 36 to 37 degrees C at 180 to 240 min after birth. In the other four newborn monkeys which were delivered by Caesarean section, the temperature was 37 to 38 degrees C just after birth. Then it decreased to 29 to 32 degrees C at 120 minutes after birth when the newborns remained singly in a cage without warming.  相似文献   

20.
Four isolates of larval Echinococcus multilocularis originating from Switzerland (CH/1, CH/6 and CH/22) and Alaska (A/1) were used to prepare crude homogenate or small tissue fragments (STF) in Eagle's Minimal Essential Medium with Earle's salts (EMEM/A), or 0.2 g tissue blocks (TB) which were suspended in the same medium. After addition of dimethylsulfoxide or glycerol in final concentrations of 5% and 10% (v/v), respectively, aliquots of 1.0 ml, containing either 0.1 ml crude homogenate or STF, or one block of 0.2 g, were kept in cryotubes for 30 min at +2-4 degrees C (precooling phase), cooled subsequently to lower temperatures following a two-step or three-step schedule and finally plunged into liquid nitrogen (-196 degrees C). After storage for one week the samples were rapidly thawed at +37 degrees C for approximately 3 min, washed in fresh EMEM/A (37 degrees C) and transferred into the peritoneal cavity of Meriones for viability testing. As judged by histological examinations and metacestode weights of each 24 Meriones infected with cryopreserved homogenate, STF or TB, respectively, 46%, 87% or 100% contained viable, proliferating parasites. The best proliferation rate occurred when 10% glycerol was used as cryoprotectant and after precooling a three-step freezing schedule was employed (30 min at -28 degrees C, 30 min at -80 degrees C, transfer to liquid nitrogen). Cooling rates were determined as 0.7, 1.0 and 1.7 degrees C min-1 for the precooling phase, step 1 and step 2, respectively, and estimated as 65 degrees C min-1 for step 3. These results demonstrate that metacestodes of E. multilocularis can be successfully maintained by cryopreservation without losing their proliferative capacity in the intermediate host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号