首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

2.
Climate change has affected plant phenology; increasing temperatures are associated with advancing first flowering dates. The impact on flowering duration, however, has rarely been studied. In this study, we analysed first flowering dates and flowering durations from a 27 year dataset of weekly flower observations on 232 plant species from the island of Guernsey in the English Channel. The aim of this study was to explore variation in trends and relationships between first flowering dates, flowering duration and temperature. We specifically looked for evidence that traits, such as life forms and phylogenetic groups, explained variation in sensitivity of first flowering and flowering duration among species. Overall trends revealed significantly earlier flowering over time, by an average of 5.2 days decade?1 since 1985. A highly significant shortening of flowering duration was observed by an average of 10 days decade?1. Correlations between first flowering, flowering duration and year varied between different species, traits and flowering periods. Significant differences among traits were observed for first flowering and to a lesser degree for flowering duration. Overall, in comparison to first flowering, more species had significant trends in flowering duration. Temperature relationships revealed large differences in strength and direction of response. 55% of the species revealed a significant negative relationship of first flowering dates and temperature. In contrast, only 19% of flowering durations had a significant negative temperature relationship. The advance in first flowering date together with a shortening of flowering duration suggests potentially serious impacts on pollinators, which might pose a major threat to biodiversity, agriculture and horticulture. Human health, in terms of pollen allergies, however, might benefit from a shortening of specific plant pollen seasons.  相似文献   

3.
4.
Various indications for shifts in plant and animal phenology resulting from climate change have been observed in Europe. This analysis of phenological seasons in Germany of more than four decades (1951–96) has several major advantages: (i) a wide and dense geographical coverage of data from the phenological network of the German Weather Service, (ii) the 16 phenophases analysed cover the whole annual cycle and, moreover, give a direct estimate of the length of the growing season for four deciduous tree species. After intensive data quality checks, two different methods – linear trend analyses and comparison of averages of subintervals – were applied in order to determine shifts in phenological seasons in the last 46 years. Results from both methods were similar and reveal a strong seasonal variation. There are clear advances in the key indicators of earliest and early spring (?0.18 to ?0.23 d y?1) and notable advances in the succeeding spring phenophases such as leaf unfolding of deciduous trees (?0.16 to ?0.08 d y?1). However, phenological changes are less strong during autumn (delayed by + 0.03 to + 0.10 d y?1 on average). In general, the growing season has been lengthened by up to ?0.2 d y?1 (mean linear trends) and the mean 1974–96 growing season was up to 5 days longer than in the 1951–73 period. The spatial variability of trends was analysed by statistical means and shown in maps, but these did not reveal any substantial regional differences. Although there is a high spatial variability, trends of phenological phases at single locations are mirrored by subsequent phases, but they are not necessarily identical. Results for changes in the biosphere with such a high resolution with respect to time and space can rarely be obtained by other methods such as analyses of satellite data.  相似文献   

5.
Significant phenological shifts induced by climate change are projected within the phytoplankton community. However, projections from current Earth System Models (ESMs) understandably rely on simplified community responses that do not consider evolutionary strategies manifested as various phenotypes and trait groups. Here, we use a species-based modelling approach, combined with large-scale plankton observations, to investigate past, contemporary and future phenological shifts in diatoms (grouped by their morphological traits) and dinoflagellates in three key areas of the North Atlantic Ocean (North Sea, North-East Atlantic and Labrador Sea) from 1850 to 2100. Our study reveals that the three phytoplanktonic groups exhibit coherent and different shifts in phenology and abundance throughout the North Atlantic Ocean. The seasonal duration of large flattened (i.e. oblate) diatoms is predicted to shrink and their abundance to decline, whereas the phenology of slow-sinking elongated (i.e. prolate) diatoms and of dinoflagellates is expected to expand and their abundance to rise, which may alter carbon export in this important sink region. The increase in prolates and dinoflagellates, two groups currently not considered in ESMs, may alleviate the negative influence of global climate change on oblates, which are responsible of massive peaks of biomass and carbon export in spring. We suggest that including prolates and dinoflagellates in models may improve our understanding of the influence of global climate change on the biological carbon cycle in the oceans.  相似文献   

6.
The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate‐sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision‐making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems.  相似文献   

7.
8.
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.  相似文献   

9.
To understand the effects of climate change on the growing season of plants in Japan, we conducted trend analysis of phenological phases and examined the relationship between phenology and air temperatures. We used phenological data for Ginkgo biloba L., collected from 1953 to 2000. We defined the beginning and the end of the growing season (BGS and EGS) as the dates of budding and leaf fall, respectively. Changes in the air temperature in the 45 days before the date of BGS affected annual variation in BGS. The annual variation in air temperature over the 85 days before EGS affected the date of EGS. The average annual air temperature in Japan has increased by 1.3°C over the last four decades (1961–2000), and this increase has caused changes in ginkgo phenology. In the last five decades (1953–2000), BGS has occurred approximately 4 days earlier than previously, and EGS has occurred about 8 days later. Consequently, since 1953 the length of the growing season (LGS) has been extended by 12 days. Since around 1970, LGS and air temperatures have shown increasing trends. Although many researchers have stated that phenological events are not affected by the air temperature in the fall, we found high correlations not only between budding dates and air temperatures in spring but also between leaf‐fall dates and air temperatures in autumn. If the mean annual air temperature increases by 1°C, LGS could be extended by 10 days. We also examined the spatial distribution of the rate of LGS extension, but we did not find an obvious relationship between LGS extension and latitude.  相似文献   

10.
11.
12.
13.
Long‐term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness‐maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade‐offs and appropriate time scales into account is critical when interpreting phenological patterns.  相似文献   

14.
欧洲典型树种展叶始期的时空变化及其对气候变化的响应   总被引:1,自引:0,他引:1  
近年来,全球变暖对植物春季物候期产生了显著影响.很多研究报道了中国地区木本植物春季物候期变化的时空格局,但在同处于北半球温带地区的欧洲则相关研究较少.为了增进物候变化及其对气候变化响应规律的区域对比,本研究利用欧洲地区展叶始期(1980-2014年)数据和相应的气象数据,研究欧洲七叶树、垂枝桦、欧洲山毛榉和夏栎4种典型...  相似文献   

15.
Trends and temperature response in the phenology of crops in Germany   总被引:10,自引:0,他引:10  
The phenology of 78 agricultural and horticultural events from a national survey in Germany spanning the years 1951–2004 is examined. The majority of events are significantly earlier now than 53 years ago, with a mean advance of 1.1–1.3 days per decade. The mean trends for 'true phases', such as emergence and flowering, of annual and perennial crops are not significantly different, although more trends (78% vs. 46%) are significant for annual crops. We attempt to remove the influence of technological advance or altered farming practices on phenology by detrending the respective time series by linear regression of date (day number) on year. Subsequently, we estimate responses to mean monthly and seasonal temperature by correlation and regression in two ways; with and without removing the year trend first. Nearly all (97%) correlation coefficients are negative, suggesting earlier events in warmer years. Between 82% and 94% of the coefficients with seasonal spring and summer temperatures are significant. The conservative estimate (detrended) of mean temperature response against mean March–May temperature (−3.73 days °C−1) is significantly less than the full estimate (−4.31 days °C−1), the 'true' size of phenological temperature response may lie in between. Perennial crops exhibited a significantly higher temperature response to mean spring temperature than the annual crops.  相似文献   

16.
The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3–8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions.  相似文献   

17.
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.  相似文献   

18.

Background and Aims

Self-pollination dominates in wheat, with a small level of out-crossing due to flowering asynchrony and male sterility. However, the timing and synchrony of male and female flowering in wheat is a crucial determinant of seed set and may be an important factor affecting gene flow and resilience to climate change. Here, a methodology is presented for assessing the timing and synchrony of flowering in wheat, Triticum aestivum.

Methods

From the onset of flowering until the end of anthesis, the anther and stigma activity of each floret was assessed on the first five developing ears in potted plants grown under ambient conditions and originating from ‘Paragon’ or ‘Spark-Rialto’ backgrounds. At harvest maturity, seed presence, size and weight was recorded for each floret scored.

Key Results and Conclusions

The synchrony between pollen dehiscence and stigma collapse within a flower was dependent on its relative position in a spike and within a floret. Determined on the basis of synchrony within each flower, the level of pollination by pollen originating from other flowers reached approx. 30 % and did not change throughout the duration of flowering. A modelling exercise parameterized by flowering observations indicated that the temporal and spatial variability of anther activity within and between spikes may influence the relative resilience of wheat to sudden, extreme climatic events which has direct relevance to predicted future climate scenarios in the UK.  相似文献   

19.
This paper examines the mean flowering times of 11 plant species in the British Isles over a 58-year period, and the flowering times of a further 13 (and leafing time of an additional 1) for a reduced period of 20 years. Timings were compared to Central England temperatures and all 25 phenological events were significantly related (P<0.001 in all but 1 case) to temperature. These findings are discussed in relation to other published work. The conclusions drawn from this work are that timings of spring and summer species will get progressively earlier as the climate warms, but that the lower limit for a flowering date is probably best determined by examining species phenology at the southern limit of their distribution. Received: 21 October 1999 / Revised: 27 January 2000 / Accepted: 27 January 2000  相似文献   

20.
陕北气候变化与生态植被变迁   总被引:9,自引:1,他引:9  
分析了128万年以来陕北气候变化及其生态植被变迁。结果表明,陕北黄土高原气候经历了多次冷、暖、干、湿的周期变化。陕北植被变迁在地质时期以及历史时期早期,主要由气候条件所控制,植被类型随气候的冷暖干湿变化而变迁。随着人类活动的加剧,气候条件不再是影响植被变迁的唯一因素,人类活动对植被的影响愈来愈明显。明清时期,气候冷干,旱灾频繁.陕北生态环境脆弱,大规模垦殖和滥烧使自然植被迅速减少,陕北自然植被遭到毁灭性破坏。20世纪50年代,陕北逐步开始生态环境治理,在对生态环境治理的同时,又对部分地区自然植被进行破坏。20世纪80年代以后,生态环境总体上趋于好转。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号