首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indoor photovoltaics (IPVs) are attracting renewed interest because they can provide sustainable energy through the recycling of photon energy from household lighting facilities. Herein, the Shockley–Queisser model is used to calculate the upper limits of the power conversion efficiencies (PCEs) of perovskite solar cells (PeSCs) for two types of artificial light sources: fluorescent tubes (FTs) and white light–emitting diodes (WLEDs). An unusual zone is found in which the dependence of the PCEs on the bandgap (Eg) under illumination from the indoor lighting sources follows trends different from that under solar irradiation. In other words, IPVs exhibiting high performance under solar irradiation may not perform well under indoor lighting conditions. Furthermore, the ideal bandgap energy for harvesting photonic power from these indoor lighting sources is ≈1.9 eV—a value higher than that of common perovskite materials (e.g., for CH3NH3PbI3). Accordingly, Br? ions are added into the perovskite films to increase their values of Eg. A resulting PeSC featuring a wider bandgap exhibits PCEs of 25.94% and 25.12% under illumination from an FT and a WLED, respectively. Additionally, large‐area (4 cm2) devices are prepared for which the PCE reaches ≈18% under indoor lighting conditions.  相似文献   

2.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   

3.
Low power electronics are an ideal application for organic photovoltaics (OPV) where a low‐cost OPV device can be integrated directly with a battery to provide a constant power source. We demonstrate ultra‐high voltage small molecule multijunction devices with open circuit voltage (VOC) values of up to 7V. Optical modelling is employed to aid the optimisation of the complex multi‐layer stacks and ensure current balancing is achieved between sub‐cells, and optimised multijunction devices show power conversion efficiencies of up to 3.4% which is a modest increase over the single junction devices. Sub‐cell donor/acceptor pairs of boron subphthalocyanine chloride (SubPc)/fullerene (C60) and SubPc/Cl6‐SubPc were selected both for their high VOC in order to minimise the required number of junctions, but also for their absorption overlap to reduce the spectral dependence of the device performance. As a result, the devices are shown to directly charge a micro‐energy cell type battery under both low illumination intensity white light and monochromatic illumination.  相似文献   

4.
Indoor photovoltaics are promising to enable self‐powered electronic devices for the Internet of Things. Here, reported is a triple‐anion CH3NH3PbI2?xBrClx perovskite film, of which the bandgap is specially designed for indoor light harvesting to achieve a record high efficiency of 36.2% with distinctive high open circuit voltage (Voc) of 1.028 V under standard 1000 lux fluorescent light. The involvement of both bromide and chloride suppresses the trap‐states and nonradiative recombination loss, exhibiting a remarkable ideality factor of 1.097. The introduction of chloride successfully restrains the halide segregation of iodide and bromide, stabilizing the triple‐anion perovskite film. The devices show an excellent long‐term performance, sustaining over 95% of original efficiency under continuous light soaking over 2000 h. These findings show the importance and potential of I/Br/Cl triple‐anion perovskite with tailored bandgap and suppressed trap‐states in stable and efficient indoor light recycling.  相似文献   

5.
Organometal halide perovskites have powerful intrinsic potential to drive next‐generation solar technology, but their insufficient thermomechanical reliability and unproven large‐area manufacturability limit competition with incumbent silicon photovoltaics. This work addresses these limitations by leveraging large‐area processing and robust inorganic hole transport layers (HTLs). Inverted perovskite solar cells utilizing NiOx HTLs deposited by rapid aqueous spray‐coating that outperform spin‐coated NiOx and lead to a 5× improvement in the fracture energy (Gc), a primary metric of thermomechanical stability, are presented. The morphology, chemical composition, and optoelectronic properties of the NiOx films are characterized to understand and optimize compatibility with an archetypal double cation perovskite, Cs.17FA.83Pb(Br.17I.83)3. Perovskite solar cells with sprayed NiOx show higher photovoltaic performance, exhibiting up to 82% fill factor and 17.7% power conversion efficiency (PCE)—the highest PCE reported for inverted cell with scalable charge transport layers—as well as excellent stability under full illumination and after 4000 h aging in inert conditions at room temperature. By utilizing open‐air techniques and aqueous precursors, this combination of robust materials and low‐cost processing provides a platform for scaling perovskite modules with long‐term reliability.  相似文献   

6.
Organic–inorganic hybrid perovskite solar cells (PSCs) are currently attracting significant interest owing to their promising outdoor performance. However, the ability of indoor light harvesting of the perovskites and corresponding device performance are rarely reported. Here, the potential of planar PSCs in harvesting indoor light for low‐power consumption devices is investigated. Ionic liquid of 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4) is employed as a modification layer of [6,6]‐phenyl‐C61‐butyric acid methyl ester) (PCBM) in the inverted PSCs. The incorporation of [BMIM]BF4 not only paves the interface contact between PCBM and electrode, but also facilitates the electron transport and extraction owing to the efficient passivation of the surface trap states. Moreover, [BMIM]BF4 with excellent thermal stability can act as a protective layer by preventing the erosion of moisture and oxygen into the perovskite layer. The resulting devices present a record indoor power conversion efficiency (PCE) of 35.20% under fluorescent lamps of 1000 lux, and an impressive PCE of 19.30% under 1 sun illumination. The finding in this work verifies the excellent indoor performance of PSCs to meet the requirements of eco‐friendly economy.  相似文献   

7.
High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiOx) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiOx hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiOx HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiOx show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiOx HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm2.  相似文献   

8.
Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells.  相似文献   

9.
Efficient sunlight‐driven water splitting devices can be achieved by pairing two absorbers of different optimized bandgaps in an optical tandem design. With tunable absorption ranges and cell voltages, organic–inorganic metal halide perovskite solar cells provide new opportunities for tailoring top absorbers for such devices. In this work, semitransparent perovskite solar cells are developed for use as the top cell in tandem with a smaller bandgap photocathode to enable panchromatic harvesting of the solar spectrum. A new CuInxGa1‐xSe2 multilayer photocathode is designed, exhibiting excellent performance for photoelectrochemical water reduction and representing a near‐ideal bottom absorber. When pairing it below a semitransparent CH3NH3PbBr3‐based solar cell, a solar‐to‐hydrogen efficiency exceeding 6% is achieved, the highest value yet reported for a photovoltaic–photoelectrochemical device utilizing a single‐junction solar cell as the bias source under one sun illumination. The analysis shows that the efficiency can reach more than 20% through further optimization of the perovskite top absorber.  相似文献   

10.
Sb2Se3, a V2‐VI3 compound semiconductor, has attracted extensive research attention in photovoltaics due to its non‐toxicity, low cost and earth‐abundant constituents. Herein, a combinatorial approach to optimize the performance of TiO2/Sb2Se3 thin film photovoltaics is employed. By simultaneously conducting a series of experiments in parallel rather than one after another, combinatorial strategy increases experimental throughput and reduces personnel costs. Key parameters such as TiO2 thickness, post‐annealing temperature and Sb2Se3 thickness are identified as 65 nm, 450 °C and 850 nm through the combinatorial approach. Finally, in combination with (NH4)2S back surface cleaning, TiO2/Sb2Se3 solar cells with 5.6% efficiency and decent stability are obtained, showcasing the power of high‐throughput strategy for accelerating the optimization of Sb2Se3 photovoltaics.  相似文献   

11.
A nonselective cation channel activated by intracellular Ca2+ was identified in inside-out membrane patches taken from cultured rat atrial myocytes. Ca2+ (0.01–1.00 mM) reversibly activated the channel in a concentration-dependent manner. The channel often showed a quick and irreversible rundown within a few minutes after patch excision. The I-V relationship of the channel was linear between –100 and +100 mV. The single channel conductance was 26.0 ± 0.5 pS and its open probability was weakly voltage-dependent. Ion-substitution experiments showed that the channel was permeable to monovalent cations (Px/PCs: Li+ (1.5) = K+ (1.5)> Na+ (1.2) > Rb+ (1.1) > Cs+ (1.0)) but not to Cl (PCl/PCs < 0.01) and Ca2+ (PCa/PCs =0.02 ± 0.01). Present address: A.B. Zhainazarov UF Center for Smell and Taste, McKnight Brain Institute, University of Florida, 100 S Newell Dr., L1-131, P.O. Box 100015, Gainesville, FL 32610-0015, USA  相似文献   

12.
NiOx hole transporting layer has been extensively studied in optoelectronic devices. In this paper, the low temperature, solution–combustion‐based method is employed to prepare the NiOx hole transporting layer. The resulting NiOx thin films show better quality and preferable energy alignment with perovskite thin film compared to high temperature sol–gel‐processed NiOx. With this, high‐performance perovskite solar cells are fabricated successfully with power conversion efficiency exceeding 20% using a modified two‐step prepared MA1?yFAyPbI3?xClx perovskite. This efficiency value is among the highest values for NiOx‐based devices. Various characterizations and analyses provide evidence of better film quality, enhanced charge transport and extraction, and suppressed charge recombination. Meanwhile, the device exhibits much better device stability compared to sol–gel‐processed NiOx and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based devices.  相似文献   

13.
Hybrid zones between species with staggered reproductive phenology sometimes occur along elevational gradients. The maintenance of such hybrid zones may depend on elevational shift in phenology and vertical dispersal of pollen and seeds. In a hybrid zone of Cerasus leveilleana (Cl) and C. sargentii (Cs), 111 adults, 372 embryos of 65 mothers, and 133 juveniles were sampled across elevations of 900–1,400 m in central Japan. Using the hybrid index estimated from nuclear microsatellites, the samples were assigned to Cl, Cs or their hybrid taxon. Cs was in higher elevations than Cl with an overlapping range, and their hybrids were in intermediary elevations. Flowering periods were earlier in Cs than in Cl with little overlap at the same elevation and were intermediate in their hybrids. Flowering periods were delayed in higher elevations and overlapped between Cl and Cs in different elevations. Fruiting periods were slightly earlier in Cs than in Cl but were largely overlapped. Effective pollinators and seed dispersers were common among the taxa. Changes in the hybrid index from mothers to their embryos were larger in hybrid mothers than in Cl or Cs mothers, indicating mating of hybrids with diverse taxa. In Cs, juveniles were more abundant in lower elevations than embryos, indicating downhill seed dispersal. Proportions of hybrids were 19% in embryos, 17% in juveniles and 12% in adults. The findings suggest that the hybrid zone is maintained by interspecific pollination between different elevations, backcrossing with hybrids at similar elevations, vertical seed dispersal and mild selection against hybrids.  相似文献   

14.
Organic photovoltaics devices typically utilize illumination through a transparent substrate, such as glass or an optically clear plastic. Utilization of opaque substrates, including low cost foils, papers, and textiles, requires architectures that instead allow illumination through the top of the device. Here, we demonstrate top‐illuminated organic photovoltaics, employing a dry vapor‐printed poly(3,4‐ethylenedioxythiophene) (PEDOT) polymer anode deposited by oxidative chemical vapor deposition (oCVD) on top of a small‐molecule organic heterojunction based on vacuum‐evaporated tetraphenyldibenzoperiflanthene (DBP) and C60 heterojunctions. Application of a molybdenum trioxide (MoO3) buffer layer prior to oCVD deposition increases the device photocurrent nearly 10 times by preventing oxidation of the underlying photoactive DBP electron donor layer during the oCVD PEDOT deposition, and resulting in power conversion efficiencies of up to 2.8% for the top‐illuminated, ITO‐free devices, approximately 75% that of the conventional cell architecture with indium‐tin oxide (ITO) transparent anode (3.7%). Finally, we demonstrate the broad applicability of this architecture by fabricating devices on a variety of opaque surfaces, including common paper products with over 2.0% power conversion efficiency, the highest to date on such fiber‐based substrates.  相似文献   

15.
Electron‐filtering compound buffer layers (EF‐CBLs) improve charge extraction in organic photovoltaic cells (OPVs) by blending an electron‐conducting fullerene with a wide energy gap exciton‐blocking molecule. It is found that devices with EF‐CBLs with high glass transition temperatures and a low crystallization rate produce highly stable morphologies and devices. The most stable OPVs employ 1:1 2,2′,2″‐(1,3,5‐benzenetriyl tris‐[1‐phenyl‐1H‐benzimidazole] TPBi:C70 buffers that lose <20% of their initial power conversion efficiency of 6.6 ± 0.6% after 2700 h under continuous simulated AM1.5G illumination, and show no significant degradation after 100 days of outdoor aging. When exposed to 100‐sun (100 kW m?2) concentrated solar illumination for 5 h, their power conversion efficiencies decrease by <8%. Moreover, it is found that the reliability of the devices employing stable EF‐CBLs has either reduced or no dependence on operating temperature up to 130 °C compared with BPhen:C60 devices whose fill factors show thermally activated degradation. The robustness of TPBi:C70 devices under extreme aging conditions including outdoor exposure, high temperature, and concentrated illumination is promising for the future of OPV as a stable solar cell technology.  相似文献   

16.
X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1?xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work.  相似文献   

17.
Silicon (Si)‐based dopant‐free heterojunction solar cells (SCs) featuring carrier‐selective contacts (CSCs) have attracted considerable interest due to the extreme simplifications in their device structure and manufacturing procedure. However, these SCs are limited by the unsatisfactory contact properties on both sides of the junction, and their efficiencies are not comparable with those of commercially available Si SCs. In this report, a high‐performance silicon‐oxide/magnesium (SiOx/Mg) electron‐selective contact (ESC) design is described. Combining an ultrathin SiOx and a low work function Mg layer, the novel ESC simultaneously yields low recombinative and resistive losses. In addition, deposition of Mg on SiOx relaxes the restriction on the threshold thickness of the SiOx for electron tunneling and therefore broadens the optimization space for rear‐sided passivation. Meanwhile, hole‐selective contact with boosted light harvesting and suppressed interfacial recombination is achieved by forming a fully conformal contact between the conducting poly(3,4‐ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) and periodic Si pyramid arrays. With the double‐sided carrier‐selective contact designs, PEDOT: PSS/Si/SiOx/Mg SCs with efficiency of 15% are finally obtained via a totally dopant‐free processing. Subsequent calculations further indicate a pathway for the improvement of these contacts toward an efficiency that is competitive with conventionally diffused pn junction SCs.  相似文献   

18.
The performance of perovskite solar cells (PSCs) relies on the synthesis method and chemical composition of the perovskite materials. So far, PSCs that have adopted two‐step sequential deposited perovskite with the state‐of‐art composition (FAPbI3)1?x(MAPbBr3)x (x < 0.05) have achieved record power conversion efficiency (PCE), while their one‐step antisolvent dripping counterparts with typical composition Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 with more bromine have exhibited much better long‐term operational stability. Thus, halogen engineering that aims to elevate bromine content in sequential deposited perovskite film would push operational stability of PSCs toward that of antisolvent dripping deposited perovskite materials. Here, a Br‐rich seeding growth method is devised and perovskite seed solution with high bromine content is introduced into a PbI2 precursor, leading to bromine incorporation in the resulting perovskite film. Photovoltaic devices fabricated by Br‐rich seeding growth method exhibit a PCE of 21.5%, similar to 21.6% for PSCs having lower bromine content. Whereas, the operational stability of PSCs with higher bromine content is significantly enhanced, with over 80% of initial PCE retained after 500 h tracking at maximum power point under 1‐sun illumination. This work highlights the vital importance of halogen composition for the operational stability of PSCs, and introduces an effective way to incorporate bromine into mixed‐cation‐halide perovskite film via sequential deposition method.  相似文献   

19.
1‐2‐2‐type Zintl phase compounds have promising thermoelectric properties because of their complex crystal structures and multiple valence‐band structures. In this work, a series of single phase (Yb0.9Mg0.1)MgxZn2?xSb2 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) compounds are prepared by alloying YbZn2Sb2 with 10 at% MgZn2Sb2 and different amounts of YbMg2Sb2. The incorporation of Mg at the Yb site, as well as at the Zn site, not only leads to an effective orbital alignment confirmed by the dramatically enhanced density of states effective mass and Seebeck coefficients, but also increases the point defect scattering, contributing to a low lattice thermal conductivity ≈0.54 W m?1 K?1 at 773 K. Combined with the optimization of the carrier concentration by Ag doping at the Zn site, a highest ZT value ≈1.5 at 773 K is achieved in (Yb0.9Mg0.1)Mg0.8Zn1.2Ag0.002Sb2, which is higher than that of all the previously reported 1‐2‐2‐type Zintl phase compounds.  相似文献   

20.
Light management holds great promise of realizing high‐performance perovskite solar cells by improving the sunlight absorption with lower recombination current and thus higher power conversion efficiency (PCE). Here, a convenient and scalable light trapping scheme is demonstrated by incorporating bioinspired moth‐eye nanostructures into the metal back electrode via soft imprinting technique to enhance the light harvesting in organic–inorganic lead halide perovskite solar cells. Compared to the flat reference cell with a methylammonium lead halide perovskite (CH3NH3PbI3?x Clx ) absorber, 14.3% of short‐circuit current improvement is achieved for the patterned devices with moth‐eye nanostructures, yielding an increased PCE up to 16.31% without sacrificing the open‐circuit voltage and fill factor. The experimental and theoretical characterizations verify that the cell performance enhancement is mainly ascribed by the broadband polarization‐insensitive light scattering and surface plasmonic effects due to the patterned metal back electrode. It is noteworthy that this light trapping strategy is fully compatible with solution‐processed perovskite solar cells and opens up many opportunities toward the future photovoltaic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号