首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Concurrent quantification of tryptophan and its major metabolites   总被引:1,自引:0,他引:1  
An imbalance in tryptophan (TRP) metabolites is associated with several neurological and inflammatory disorders. Therefore, analytical methods allowing for simultaneous quantification of TRP and its major metabolites would be highly desirable, and may be valuable as potential biomarkers. We have developed a HPLC method for concurrent quantitative determination of tryptophan, serotonin, 5-hydroxyindoleacetic acid, kynurenine, and kynurenic acid in tissue and fluids. The method utilizes the intrinsic spectroscopic properties of TRP and its metabolites that enable UV absorbance and fluorescence detection by HPLC, without additional labeling. The origin of the peaks related to analytes of interest was confirmed by UV–Vis spectral patterns using a PDA detector and mass spectrometry. The developed methods were validated in rabbit fetal brain and amniotic fluid at gestational day 29. Results are in excellent agreement with those reported in the literature for the same regions. This method allows for rapid quantification of tryptophan and four of its major metabolites concurrently. A change in the relative ratios of these metabolites can provide important insights in predicting the presence and progression of neuroinflammation in disorders such as cerebral palsy, autism, multiple sclerosis, Alzheimer disease, and schizophrenia.  相似文献   

2.
Reversed-phase HPLC method by direct plasma injection has been developed for the analysis of major tryptophan metabolites (both metabolites in kynurenine pathways and in indole pathways). Two columns were used: one was a short precolumn of protein-coated octadecylsilane (ODS) for deproteinization and also for trapping of tryptophan metabolites, and the other was an analytical column of the usual ODS. By a column-switching method, the metabolites trapped in the precolumn were allowed to be eluted through the analytical column. The recovery of the spiked metabolites in plasma by the present method was almost quantitative (98-102%) with good reproducibility (CV less than 3%, within-run), and the method is determined to be simple and reproducible for the analysis of total (free + protein-bound) tryptophan metabolites in plasma. The analysis of rabbit plasma showed several peaks corresponding to kynurenine, kynurenic acid, 5-hydroxyindole-3-acetic acid, indole-3-lactic acid, indole-3-acetic acid, indole-3-propionic acid, and 5-hydroxy-tryptamine in addition to tryptophan.  相似文献   

3.
Abstract: Rats with portacaval shunts were used as a model of hepatic encephalopathy and compared to sham-operated controls. First, the changes in intermediary metabolites and amino acids in blood and whole brain were characterized and found to be similar at 4 and 7 weeks after shunting. Second, the effects of nutritional therapy on selected metabolites and tryptophan transport into brain were assessed in rats 5 weeks after surgery. Ordinary food was removed and the rats were treated with glucose given either by mouth or intravenously, or intravenous glucose plus branched chain amino acids. Several abnormalities in plasma amino acid concentrations were reversed by treatment. The abnormally high brain uptake index of tryptophan, a consequence of portacaval shunting, was not lowered by any of the treatment regimens; it was even higher in the groups given glucose by mouth and glucose plus amino acids. Calculated competition for entry of tryptophan, phenylalanine, and tyrosine into brain was unchanged (glucose plus amino aicds), or reduced (glucose alone). Brain glutamine content was brought to near normal by all treatments. Infusion of glucose plus branched chain amino acids normalized brain content of tryptophan, phenylalanine, and tyrosine, even though the brain uptake index of tryptophan was higher in this group. Thus, partial or complete reversal of several abnormalities found after portacaval shunting was achieved by removal of oral food and administration of glucose. The addition of branched chain amino acids to the glucose infusion restored brain content of three aromatic amino acids to near normal, by a mechanism which appeared to be unrelated to transport across the blood-brain barrier.  相似文献   

4.
Single doses of DL-alpha-amino-beta-(2-pyridine)propanoic acid (2-PA, 100 mg/kg) significantly decreased the holoenzyme and apoenzyme activities of rat liver tryptophan pyrrolase (TP) and increased brain tryptophan, serotonin (5-HT) and 5-hydroxyindole-3-ylacetic acid concentrations. 2-PA had no inhibitory effect on either of the enzyme activities in vitro, but its expected metabolites were effective. Single doses of DL-alpha-amino-beta-(3-pyridine)propanoic acid (3-PA, 100 mg/kg) decreased only the holoenzyme activity and elevated brain tryptophan and its metabolites levels in rats. 3-PA and its metabolite, 3-pyridylpyruvate, inhibited only the holoenzyme activity in vitro. DL-alpha-Amino-beta-(4-pyridine)propanoic acid (4-PA) caused significant changes in liver TP (holo- and apoenzyme forms) activity and brain tryptophan concentration only after repeated administration (100 mg/kg/day). 4-PA was a weak inhibitor of the holoenzyme, but its metabolites apparently inhibited the holo- and apoenzyme activities in vitro. These findings suggest that PA analogs (and/or their metabolites) increased brain tryptophan (and hence 5-HT synthesis) by directly inhibiting liver TP activity.  相似文献   

5.
—Using either tryptophan or 5-hydroxytryptophan as the precursor, and examining the metabolites in whole rat brain and in brain regions of dog, the pattern of metabolites resembled that found under physiological conditions only after tryptophan administration. From these and other observations on the cerebral 5-hydroxyindoles the main conclusions are firstly, that there are regional differences within brain in storage, turnover or metabolic fate of 5-HT. Secondly, that the normal pathway appears to be well localized biochemically with linking of its succeeding steps, and thirdly, that turnover through the system is normally controlled by intracerebral tryptophan 5-hydroxylase in both rats and dogs although there are differences between the species in the cerebral metabolism of 5-HT.  相似文献   

6.
1. Acute administration of ethanol exerts a biphasic effect on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid. Both effects are associated with corresponding changes in the availability of circulating free tryptophan. 2. The initial increases in the above concentrations are prevented by ergotamine, are unaltered by allopurinol and are potentiated by theophylline, whereas the later decreases are prevented by both ergotamine and allopurinol. 3. It is suggested that the initial enhancement by ethanol of brain tryptophan metabolism is caused by catecholamine-mediated lipolysis followed by displacement of protein-bound serum tryptophan, whereas the activation of liver tryptophaan pyrrolase, which is produced by the same mechanism, leads to the later decreases in the brain concentrations of tryptophan and its metabolites. 4. The initial effects of ethanol can be reproduced by an equicaloric dose of sucrose, and a comparison of the two treatments alone could therefore be misleading. 5. The effects of ethanol on liver and brain tryptophan metabolism have also been examined in mice, and a comparison of the results with those previously reported suggests that the ethanol effects are strain-dependent.  相似文献   

7.
A new method for the determination of tryptophan and its metabolites in a single mouse brain using high-performance liquid chromatography (HPLC) with fluorometric detection is described. Tryptophan, serotonin, 5-hydroxyindoleacetic acid, indoleacetic acid, and tryptophol were clearly separated by a C8 reverse-phase column. Tissue preparation is performed only to centrifuge homogenates of brain prior to the injection to HPLC. The sensitivity is in the range from 10 to 15 pg.  相似文献   

8.
Stressful treatments and immune challenges have been shown previously to elevate brain concentrations of tryptophan. The role of the autonomic nervous system in this neurochemical change was investigated using pharmacological treatments that inhibit autonomic effects. Pretreatment with the ganglionic blocker chlorisondamine did not alter the normal increases in catecholamine metabolites, but prevented the increase in brain tryptophan normally observed after footshock or restraint, except when the duration of the footshock period was extended to 60 min. The footshock- and restraint-related increases in 5-hydroxyindoleacetic acid (5-HIAA) were also prevented by chlorisondamine. The increases in brain tryptophan caused by intraperitoneal injection of endotoxin or interleukin-1 (IL-1) were also prevented by chlorisondamine pretreatment. The footshock-induced increases in brain tryptophan and 5-HIAA were attenuated by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phenoxybenzamine or the muscarinic cholinergic antagonist atropine. Thus the autonomic nervous system appears to be involved in the stress-related changes in brain tryptophan, and this effect is due to the sympathetic rather than the parasympathetic limb of the system. Moreover, the main effect of the sympathetic nervous system is exerted on beta- as opposed to alpha-adrenergic receptors. We conclude that activation of the sympathetic nervous system is responsible for the stress-related increases in brain tryptophan, probably by enabling increased brain tryptophan uptake. Endotoxin and IL-1 also elevate brain tryptophan, presumably by a similar mechanism. The increase in brain tryptophan appears to be necessary to sustain the increased serotonin catabolism to 5-HIAA that occurs in stressed animals, and which may reflect increased serotonin release.  相似文献   

9.
Quinolinic acid, an endogenous excitotoxin, and kynurenic acid, an antagonist of excitatory amino acid receptors, are believed to be synthesized from tryptophan after the opening of the indole ring. They were measured in the rat brain and other organs using gas chromatography-mass spectrometry or HPLC. The enzyme indoleamine 2,3-dioxygenase, capable of cleaving the indole ring of tryptophan, was induced by administering bacterial endotoxins to rats, which significantly increased the brain content of both quinolinic and kynurenic acids. Nicotinylalanine, an analogue of kynurenine, inhibited this endotoxin-induced accumulation of quinolinic acid while potentiating the accumulation of kynurenic acid. The possibility of significantly increasing brain concentrations of kynurenic acid without a concomitant increase in quinolinic acid may provide a useful approach for studying the role of these electrophysiologically active tryptophan metabolites in brain function and preventing the possible toxic actions of abnormal synthesis of quinolinic acid.  相似文献   

10.
In suckling hyperphenylalaninemic (hyper-Phe) rats, all essential amino acids including tryptophan are depleted in the blood. The inadequate supply of Trp to the developing brain leads to a decline of Trp, of serotonin, and of 5-hydroxyindoleacetic acid. The exhaustion of amino acids in both blood and brain can be restored by administration of Lys. Even though Phe is still elevated in blood and brain, Trp, serotonin and 5-hydroxyindoleacetic acid, are no longer depleted in the brain. This observation contradicts the idea that the serotonin deficit in the developing hyper-Phe brain is caused by competitive uptake inhibition of tryptophan or by the interference of Phe metabolites with the formation of serotonin. Increased accumulation of all large neutral amino acids in peripheral tissues and an impeded intestinal amino acid transport in suckling hyper-Phe rats appear to be responsible for the deficient supply of other amino acids, including Trp, to the developing brain. The availability of Lys for developing extraintestinal tissues seems to be involved in the regulation of intestinal amino acid transport.  相似文献   

11.
Tryptophan metabolites such as kynurenate (KYNA), xanthurenate (XA), and quinolinate are considered to have an important impact on many physiological processes, especially brain function. Many of these metabolites are secreted with the urine. Because organic anion transporters (OATs) facilitate the renal secretion of weak organic acids, we investigated whether the secretion of bioactive tryptophan metabolites is mediated by OAT1 and OAT3, two prominent members of the OAT family. Immunohistochemical analyses of the mouse kidneys revealed the expression of OAT1 to be restricted to the proximal convoluted tubule (representing S1 and S2 segments), whereas OAT3 was detected in almost all parts of the nephron, including macula densa cells. In the mouse brain, OAT1 was found to be expressed in neurons of the cortex cerebri and hippocampus as well as in the ependymal cell layer of the choroid plexus. Six tryptophan metabolites, including the bioactive substances KYNA, XA, and the serotonin metabolite 5-hydroxyindol acetate inhibited [3H]p-aminohippurate (PAH) or 6-carboxyfluorescein (6-CF) uptake by 50–85%, demonstrating that these compounds interact with OAT1 as well as with OAT3. Half-maximal inhibition of mOAT1 occurred at 34 µM KYNA and 15 µM XA, and it occurred at 8 µM KYNA and 11.5 µM XA for mOAT3. Quinolinate showed a slight but significant inhibition of [3H]PAH uptake by mOAT1 and no alteration of 6-CF uptake by mOAT3. [14C]-Glutarate (GA) uptake was examined for both transporters and demonstrated differences in the transport rate for this substrate by a factor of 4. Trans-stimulation experiments with GA revealed that KYNA and XA are substrates for mOAT1. Our results support the idea that OAT1 and OAT3 are involved in the secretion of bioactive tryptophan metabolites from the body. Consequently, they are crucial for the regulation of central nervous system tryptophan metabolite concentration. kidneys; brain; macula densa; transforming growth factor; N-methyl-D-aspartate receptor  相似文献   

12.
Abstract— Seven-day-old rats were injected intraperitoneally with l -phenylalanine (1 g/kg) and the time course of brain polyribosome disaggregation and changes in brain levels of phenylalanine, tryptophan and tyrosine were determined. Disaggregation of brain polyribosomes preceded the increase in levels of phenylalanine in brain, and followed the same time course as depletion of tryptophan from brain. The effects of several metabolites of phenylalanine (which are formed in phenylketonuria) on protein synthesis in vitro was determined for brain and liver systems. None of the compounds tested was inhibitory at concentrations below 10 mM and in all cases hepatic protein synthesis was more sensitive to inhibition than was the corresponding system from brain. Ribosomal dimers, formed in brain after injection of phenylalanine, were incapable of supporting high levels of protein synthesis in vitro, a finding that suggested that the inhibition of protein synthesis in vitro in cell-free systems of brain tissue after injection of phenylalanine into young rats was mediated by disaggregation of brain polyribosomes associated with tryptophan deficiency in brain.  相似文献   

13.
W H Lyness 《Life sciences》1982,31(14):1435-1443
An assay has been developed for brain tryptophan using reverse-phase liquid chromatography with electrochemical detection. The method simultaneously assays dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). The method does not require elution from ion exchange resins. After deproteinization and centrifugation samples are injected directly onto the chromatographic column. It was found that small changes in mobile phase pH markedly influenced the retention time of tryptophan while elution of the indoleamines and catecholamines did not change. The assay of these endogenous compounds in a single injection proved not expedient but inexpensive. Values obtained using alumina and ion exchange resins yielded comparable values.  相似文献   

14.
A rapid, sensitive assay for tryptophan and some of its metabolites in urine, plasma and saliva has been developed using sodium dodecylsulphate as a pairing ion in a surfactant ion-pair high-performance liquid chromatography technique. The method is highly selective for tryptophan which is separated from its main indoleamine metabolites, 5-hydroxytryptophan, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, and from kynurenine. The usefulness of the assay has been demonstrated in plasma level and urinary excretion studies of orally administered tryptophan.  相似文献   

15.
肠道微生物在肠道稳态和大脑健康中发挥着举足轻重的作用.血清素是大脑的一种重要的单胺类神经递质,90%以上在结肠肠嗜铬细胞中由色氨酸代谢转化而来,在机体发挥广泛作用.近年来的研究表明,血清素对机体发挥的作用可能受到肠道微生物影响.肠道中某些微生物具有产生血清素的能力,同时,微生物群及其代谢产物(如丁酸)能通过影响色氨酸羟...  相似文献   

16.
We investigated the effects of vitamin E deficiency on the monoamine metabolism in the rat brain. Male Wistar rats fed on the vitamin E deficient diet for 24 weeks were analyzed. At 28 weeks, they showed a reduced growth rate (52% of reduction), muscle atrophy, a motor weakness of hind limbs and disturbance of gait. The concentrations of monoamines, their precursors and metabolites in the brain were simultaneously determined using high performance liquid chromatography (HPLC) coupled with a coulometric detection with electrode array system. In addition, tryptophan hydroxylase activity was measured. The dopamine (p = 0.009) and serotonin (p = 0.04) levels in the brain stem of vitamin E deficients rats were significantly lower than in the controls, whereas their precursors tyrosine (p = 0.0009) and tryptophan (p = 0.0065) levels in the brain stem were significantly higher than in the controls. Moreover, tryptophan hydroxylase activity (p = 0.0005) in the brain stem of vitamin E deficient brains was significantly lower than in the controls. All statistical comparisons were done using non-parametric tests (Mann-Whitney U test). These results suggest that vitamin E deficiency may play a role in the disturbance of monoamine metabolism in rat brain.  相似文献   

17.
A fast and sensitive method for the analysis of tryptophan and some of its metabolites is discussed. A reversed-phase chromatographic system with water mobile phase can separate tryptophan, N-formalkynurenine, kynurenine and 3-hydroxykynurenine in less than 15 min at a flow-rate of 1 ml/min. The application of the method to the analysis of tryptophan and kynurenine in untreated urine of a patient loaded with tryptophan is described. The ease and speed of analysis makes the method very attractive for clinical purposes. Among other things, it was found that tryptophan in untreated urine degrades with time, even if the sample is frozen at ?11°.  相似文献   

18.
Studies on serotonin in the insect nervous system has long been neglected, although serotonin is a putative neurotransmitter. During the course of this study the serotonin content was found to be significantly higher than that found in mammalian midbrain. Parachlorophenylalanine was found to inhibit the first step of the biosynthetic pathway by inhibiting tryptophan-hydroxylase enzyme and leading to alterations in the concentrations of metabolites such as 5-hydroxy tryptophan, 5-hydroxy indole acetic acid and tryptophan. Using a dose of 15 μg/g the inhibitory effect was not long lasting and recovery was observed to restore the normal levels. Higher trytophan levels were observed after a certain period of P-chlorophenylalanine treatment because there was a block in the biosynthetic path and tryptophan could not be utilized for 5-HT synthesis. A negative correlation between brain tryptophan and protein content was observed in both the cases of P-chlorophenylalanine and reserpine treatments.  相似文献   

19.
It is known that the accumulation of tryptophan and its metabolites is related to brain damage associated with both hypertryptophanemia and neurodegenerative diseases. In this study, we investigated the effect of tryptophan administration on various parameters of behavior in the open-field task and oxidative stress, and the effects of creatine and pyruvate, on the effect of tryptophan. Forty, 60-day-old male Wistar rats, were randomly divided into four groups: saline, tryptophan, pyruvate + creatine, tryptophan + pyruvate + creatine. Animals received three subcutaneous injections of tryptophan (2 μmol/g body weight each one at 3 h of intervals) and/or pyruvate (200 μg/g body weight 1 h before tryptophan), and/or creatine (400 μg/g body weight twice a day for 5 days before tryptophan twice a day for 5 days before training); controls received saline solution (NaCl 0.85%) at the same volumes (30 μl/g body weight) than the other substances. Results showed that tryptophan increased the activity of the animals, suggesting a reduction in the ability of habituation to the environment. Tryptophan induced increase of TBA-RS and total sulfhydryls. The effects of tryptophan in the open field, and in oxidative stress were fully prevented by the combination of creatine plus pyruvate. In case these findings also occur in humans affected by hypertryptophanemia or other neurodegenerative disease in which tryptophan accumulates, it is feasible that oxidative stress may be involved in the mechanisms leading to the brain injury, suggesting that creatine and pyruvate supplementation could benefit patients affected by these disorders.  相似文献   

20.
Using immunocytochemical techniques, we report here direct evidence of kynurenine (Kyn) presence and localization in the lung and brain. Kyn is a metabolite of tryptophan and 5-hydroxytryptophan, produced by indoleamine 2,3-dioxygenase (IDO). Whereas IDO has been quantitated in tissues from lung, brain, and other organs, Kyn has only been identified in brain (by HPLC), and its specific localization has not been determined. We reacted alternate serial paraffin sections with antisera raised in rabbits against a L-Kyn-albumin conjugate, and with anti-5HT (serotonin, 5-hydroxytryptamine), using the PAP method. Kyn-like immunoreactivity in the lung was specifically localized to cells of the bronchiolar epithelium resembling basal cells. Taller epithelial cells in the bronchi and dorsal trachea were likewise positive whereas neuroepithelial bodies were negative. Immunoreactivity in the brain was typically localized to cells localized in the ependyma of the walls of all ventricles, and to nerve fibers. The cellular Kyn-like reactivity was totally separate from that of anti-5HT, the latter uniquely staining argyrophil lung neuroendocrine cells and raphae neurons of the brain. Our findings suggest a route of tryptophan metabolism in the lung and brain alternate to the common pathway leading to 5-hydroxyindoleacetic acid via 5-HT. This route is of physiologic and pathologic significance as many metabolites are pharmacologically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号