首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The male silkworm moth, Bombyx mori, exhibits a zigzagging pattern as it walks upwind to pheromones. This species usually does not fly, but obvious wing-beating accompanies the pheromone-mediated walking. Males supported by a `sled', after having their legs removed, also moved upwind in a pheromone plume along zigzagging tracks, indicating that wing-generated thrust and torque result in locomotory paths similar to those observed from walking moths. Using a high-speed video system we investigated the correlation between the wing movements and zigzag walking. The wing ipsilateral to the direction of the turn showed a greater degree of retraction with respect to the contralateral wing. The timing of the wing retraction pattern was synchronized with changes of direction in the walking track. Coordination of wing movements and walking pattern was not dependent on visual feedback or sensory feedback generated from neck movements associated with turning. The results presented here, taken together with our previous studies of descending interneurons suggest that the coordination of wing movements with the walking pattern may result from the activity of a set of identified interneurons descending from the brain to the thoracic ganglia and/or may be coordinated by coupling of oscillating circuits for walking and wing beating. Accepted: 15 May 1997  相似文献   

2.
The wind-orientation of carrion beetles (Necrophorus humator F.) was studied by use of a locomotion-compensator.
1.  Beetles walking on a horizontal surface for periods of several minutes in a dark environment without an air current and other orientational stimuli seldom keep straight paths. They walk along individually different circular paths (Fig. 1). The mean walking speed is 5.6±1.0 cm/s. The mean of the angular velocity reaches maximally 25 °/s for individual beetles (mean angular velocity of the analysed population of 152 beetles: 1.9±9.3 °/s). The distribution of the mean walking directions of the population shows that the beetles display no preference for one direction (Fig. 3 A). The instantaneous value of the individual angular velocity is independent of the instantaneous walking direction.
2.  During exposure to an air current the individual beetles keep straight and stable courses with any orientation relative to the direction of air flow (Fig. 4). The mean walking directions of 76 individuals point in all directions but there is a weak preference of windward tracks (Fig. 3B).
3.  Wind orientated walking starts at a threshold wind velocity of about 5 cm/s (Fig. 6). The walking tracks straighten with increasing air current velocity. This leads to a narrowing of the distribution of the instantaneous walking directions around the preferred walking direction (Fig. 7C). This narrowing is due to an increase in the slope of the characteristic curve (angular velocity as a function of walking direction) of the wind-orientation system.
4.  Twenty percent of the beetles show a spontaneous change of their anemotactic course during walks of 5 min duration. Neither the time of the change, its position on the track or the direction of the new course are predictable. There is, however, a slight preference for 90±20° changes in the walking direction (Fig. 8).
5.  The antennae (Fig. 9) act as the only sense organs responsible for the wind orientation. The capability for wind orientated walks is lost after ablation of both flagella (Fig. 10).
  相似文献   

3.
Iken  K.B.  Amsler  C.D.  Greer  S.P.  & McClintock  J.B. 《Journal of phycology》2000,36(S3):32-33
The swimming behavior of spores of the brown alga Hincksia irregularis was analyzed using computer-assisted motion analysis. We distinguished five main swimming patterns: straight paths, search circles, orientation, gyration, and wobbling. We suggest different functional values for the individual swimming patterns. Straight paths, search circles, and orientation are different but all may be important in small-scale movements in the benthic boundary layer. As such, they could enable a spore to find a suitable microenvironment for germination and growth. Gyration occurs during the initial reversible phase of adhesion that can lead to settlement. Wobbling is typical for irritated or mechanically damaged spores and does not seem to be a typical pattern associated to settlement. The dominant swimming patterns changed with spore age (10 ± 5 to 60 ± 5 min of spore age), with young spores mainly swimming in straight paths and search circles and older spores in orientation and gyration. This change in swimming patterns can be quantified by speed (decrease over time) and rate of change of direction (increase over time). Based on these results, we suggest that computer-assisted motion analysis of the swimming behavior of H. irregularis spores can be used to develop bioassays with both ecological and technological relevance.  相似文献   

4.
The wind-orientated walk of carrion beetles Necrophorus humator F. was analysed under closed-loop conditions with a walking compensator and under openloop conditions with a paired tread wheel (Fig. 1).
1.  On the walking compensator an animal runs stable courses with a preferred direction relative to an air current (velocity =; 100 cm/s, Fig. 2B-D). A change in the air-current direction causes a corresponding adjustment of the mean walking direction (Fig. 3). Such course adjustment works best for changes in the air-current direction by an absolute value of 90° (Table 2).
2.  Under closed-loop conditions the animal shows deviations of less than ± 45° around its preferred direction relative to the wind (Fig. 2B-D). The characteristic curve which describes the animal's angular velocity as a function of the animal's walking direction relative to the air-current stimulus is therefore revealed only in this angular range (Fig. 3, top).
3.  Under open-loop conditions, however, complete characteristic curves can be obtained because the animal's walking reaction in response to any given angle of air-current stimulus is measurable on the paired tread wheel (Fig. 4). The characteristic curves are approximately sinusoidal functions. They can either show a shift parallel to the ordinale by a superimposed direction-independent constant angular velocity alone or, at the same time, they can independently exhibit an angular shift along the abscissa (Fig. 5).
4.  The walking tracks straighten with increasing air-current velocity (Fig. 6A, insets), i.e. the animal more rapidly compensates deviations from a preferred course. This corresponds to higher amplitudes of the characterisic curve and steeper slopes at the negative zero-crossing point under open- as well as under closed-loop conditions (Fig. 6).
5.  Walking in an air-current field can be explained by a model of the course control system using a feedback loop (Fig. 7). This model operates according to a sinusoidal characteristic function on which is superimposed a Gaussian white noise process of angular velocity which is independent of walking direction. The model produces realistic walking tracks in an air-current field (Fig. 8).
  相似文献   

5.
In gradients of external chemo-attractant, mammalian neutrophilic leukocytes (neutrophils) and Dictyostelium discoideum amoebae adopt a polarized morphology and selectively accumulate lipid products of phosphatidylinositol-3-OH kinases (PI(3)Ks), including PtdIns(3,4,5)P(3), at their up-gradient edges; the internal PtdIns(3,4,5)P(3) gradient substantially exceeds that of the external attractant. An accompanying report presents evidence for a positive feedback loop that amplifies the gradient of internal signal: PtdIns(3,4,5)P(3) at the leading edge stimulates its own accumulation by inducing activation of one or more Rho GTPases (Rac, Cdc42, and/or Rho), which in turn increase PtdIns(3,4,5)P(3) accumulation. Here we show that interruption of this feedback by treatment with PI(3)K inhibitors reduces the size and stability of pseudopods and causes cells to migrate in jerky trajectories that deviate more from the up-gradient direction than do those of controls. Moreover, amplification of the internal PtdIns(3,4,5)P(3) gradient is markedly impaired by latrunculin or jasplakinolide, toxins that inhibit polymerization or depolymerization of actin, respectively. Thus reciprocal interplay between PtdIns(3,4,5)P(3) and polymerized actin initiates and maintains the asymmetry of intracellular signals responsible for cell polarity and directed motility.  相似文献   

6.
1. The relative effect of migration and local growth on the spatio‐temporal density‐distribution of two co‐existing herbivorous weevils, Cionus scrophulariae L. and C. tuberculosus Scop., in 32 host plant Scrophularia nodosa L. patches of varying sizes was investigated. 2. Predictions of the temporal development of the slope in the density‐patch size relationships were derived from a basic population model with scale‐dependent migration rates. The model indicated that the slopes in the density‐patch size relationships during the early season should be reflected by the net scaling of immigration and emigration rates, whereas the slopes during the later season should increase as a result of local growth. 3. Emigration rates of the weevils were estimated in a field experiment, were the weevils coexisted in space and time. These results were then combined with a previous estimate of immigration rates in order to determine the net scaling of migration rates. 4. The emigration rate differed between species, caused by different movement rates in small patches, which could explain differences in the general slope of the density‐patch size relationships of the weevils in the natural figwort patches throughout the summer. The slopes in the relationships in the early season were largely predicted by the net scaling of migration rates. The slope also increased in the later season for C. tuberculosus, whereas the slope decreased for C. scrophulariae. 5. It was concluded that the understanding of both inter‐ and intra‐specific variations in density‐patch size relationships of insect herbivores can be improved using population models incorporating scale‐dependent migration and local growth.  相似文献   

7.
Orientation mechanism of the glacier midge (Chironomidae;Diamesa sp.) was studied in a Himalayan glacier (Yala glacier) in Nepal. This insect, a newly found cold tolerant chironomid characterized by reduced wings and antennae, is unable to fly, and is found on the surface of the glacier and in small cavities beneath it. The larvae grow in the melt-water drainage channels under the ice and feed on blue-green algae and bacteria growing there. The insect is the first to be found which spends its entire life cycle in the snow and ice of a glacier: the coldest insect habitat ever recorded. Female adults have a very long life span and migrate toward the upper part of the glacier by walking. They walk straight by means of a sun-compass; the direction of which could be altered by changing the apparent position of the sun with a hand mirror. Field data strongly suggested that the direction of their walk was corrected by some information on the slope direction. They seemed to assess the slope direction during walking straight by means of sun-compass. The migration is thought to be a kind of upstream migration well known in stream insects or that for over wintering.  相似文献   

8.
Abstract The paths of Colorado beetles ( Leptinotarsa decemlineata Say) in a featureless environment are circular, like those of other species studied. The turning velocity may reach 35o/s and is due to an internal asymmetry, which may change spontaneously. Normally, all control loops of the insect, like fixation or optomotor responses, must work against this asymmetry to stabilize the insect's path. Stationary vertical patterns damp this turning tendency, but their effect is not strong enough to induce a straight path. Only 70% of the turning tendency can be so eliminated. This reaction is termed optomotor response because it can be adequately described with the parameter turning velocity alone. The insect's path was stabilized more effectively when pattern wavelengths were greater than 60o. The insects seemed to fixate these wider stripes. This reaction is termed fixation because the correlation between pattern components and insect's course becomes prominent.
A comparison was made between these reactions to stationary patterns and to turning patterns. No differences could be found in the behavioural reactions to the different situations. This suggests that the insect does not use an internal representation of its spontaneous turning tendency to discriminate between the type of turning of the optical environment. These results can be explained by a simple feedback control loop with an additive interaction between the internal turning command and feedback signals from the eyes.  相似文献   

9.
COMPARATIVE ANALYSIS OF MAMMALIAN SPERM MOTILITY   总被引:3,自引:2,他引:1  
Spermatozoa of several mammalian species were studied by means of high-speed cinematography and electron microscopy. Three types of motile patterns were observed in mouse spermatozoa. The first type involved an asymmetrical beat which seemed to propel the sperm in circular paths. The second type involved rotation of the sperm and appeared to allow them to maintain straight paths. In the third type of pattern, the sperm appeared to move by crawling on surfaces in a snakelike manner. Spermatozoa of rabbit and Chinese hamster also had an asymmetrical beat which sometimes caused them to swim in circles. In spite of the asymmetry of the beat, these spermatozoa were also able to swim in straight paths by rotating around a central axis as they swam. Spermatozoa of some species appeared very flexible; their flagella formed arcs with a very small radius of curvature as they beat. Spermatozoa of other species appeared very stiff, and their flagella formed arcs with a very large radius of curvature. The stiffness of the spermatozoan appeared to correlate positively with the cross-sectional area of the dense fibers. This suggests that the dense fibers may be stiff elastic elements. Opossum sperm become paired as they pass through the epididymis. Pairs of opossum spermatozoa beat in a coordinated, alternating manner.  相似文献   

10.
Summary The wild type nematode,Caenorhabditis elegans, moves in a sinusoidal wave pattern and leaves sinusoidal paths behind it on a bacterial lawn. The nematode crawls on its side on a special cuticular tread that extends straight down the length of its body. Wild type worms also have rows of musculature and a ventral nerve cord that extend straight down the body. Roller mutants rotate around their long axis as they crawl and move in circular paths. Three roller mutants have been studied. Two mutants are left rollers and one is a right roller. The left rollers have left-handed helical treads, body musculatures, and ventral nerve cords whereas these structures are right-handed helices in the right roller. Double mutants constructed from roller mutants and long mutants indicate that long rollers have helices of the same pitch as normal length rollers. Double mutants constructed from rollers and dumpy mutants that are short and fat indicate dumpy phenotype is epistatic to roller. Double mutants constructed from rollers and blister mutants that have cuticular swelling indicate roller phenotype is epistatic to blister. The results suggest that the roller phenotypes are due to cuticular lesions. Rollers can chemotaxe up a gradient of an attractant by turning off their body muscle movement and continuing their head movements.  相似文献   

11.
ABSTRACT. The searching tactics of the housefly, Musca dormestica L. (Diptera: Muscidae), have been delineated from digitized pathways of flies walking in patches of sucrose drops arranged in linear (ROW) and hexagonal (HEX) arrays. The areas covered by flies in ROW and HEX patches are distinctly different, but flies seem not to employ different tactics for the two types of resource arrays. The number of drops located, if at least one drop is found, does not differ between ROW and HEX. Most quantitative measures of local search remain constant after the first interdrop interval, although feeding time decreases as flies sample successive drops. Local search intensifies after each drop is ingested, with locomotory rate decreasing and turning rate increasing, followed by decay of both measures toward ranging levels. Searching can be characterized by two movement tendencies resulting from specific, definable, locomotory functions: a forward-moving tendency is expressed by the fly as it leaves a resource in approximately the same direction as it arrives; and local search is characterized by looping, rather than straight walking, with a variable turning rate that generates a rough ‘zigzag’ superimposed on looping. The two movement tendencies, combined, allow flies to locate resources in a linear arrangement, because of the forward-moving tendency, and to locate resources not arranged in a linear array because of the ‘noisy’ loop. M. domestica does not appear to retain and use information gained from one patch of drops in another, so the search tactic of the fly seems therefore to be a compromise between straight movement and circular movement that may be adaptive for an environment subject to frequent changes in the spatial distribution of resources. Giving-up-time, the period between ingesting the last drop and leaving the patch, is a function of the rate of change in the transition from local search to ranging, which is constant in our experiments. If a fly does not encounter another drop while ranging, during which it walks relatively straight, the fly moves out of and away from the patch.  相似文献   

12.
ABSTRACT. Tracks of dewinged gypsy moth males, Lymantria dispar L. (Lymantriidae), walking upwind in an airstream without pheromone consist of marked alternations between more or less straight upwind segments, partly with an arcadic structure, and twisted segments. This apparently complicated behaviour can, however, simply be explained by a superposition of noise and two turning commands: an upwind turning tendency, derived from the anemoreceptive system, which represents an average of the moth's angular positions over a period of time; and an internal turning tendency which consists of strong but brief bursts. These bursts are produced intermittently; successive bursts do not necessarily alternate polarity. Amputation of one antenna increases the probability of bursts towards the amputated side; therefore a separate burst source is postulated for each antenna. In the presence of the attractant pheromone (+)-disparlure, the anemotactic signal is weighted higher; twisted segments are, therefore, less pronounced.
There is a chemotropotactical component involved in the male's orientation. The tropotactical signal, dependent on the difference of odour concentration perceived by the left and right antenna, competes with the upwind turning tendency.  相似文献   

13.
Summary Electromyograms were recorded from leg muscles of the cockroachGromphadorhina during walking and righting under free-ranging and tethered conditions. Two muscles which are essentially synergistic during walking become antagonistic during righting (Fig. 3, 4). This explains in part the difference in the direction of the leg stroke in the two behaviors (Fig. 2). Other properties of the muscle activity are very similar during the two rhythms: the same motoneurons appear to be active (Fig. 5, 6); cycle frequencies are the same; the burst length of one motoneuron studied varies with burst frequency in a generally similar manner in both behaviors (Fig. 7); inter-leg coordination is the same (Fig. 9); and transganglionic coupling characteristic of walking can occur while a leg on one side is engaged in walking, and its contralateral homologue is engaged in righting (Fig. 10). Although other properties of the leg rhythms are different in walking and righting, these differences appear to result from dissimilarities in sensory feedback. It is concluded that although the two leg rhythms are superficially quite different, the underlying central neuronal rhythms are very similar, and possibly result from activity in the same central oscillatory cell or circuit.We thank Carol Smith for technical assistance. This work was supported by NIH grant #NS09083-05. Computation was done at the New York State Veterinary College Computer Facility which is supported by NIH grant RR 326.  相似文献   

14.
Male Cadra cautella (Walker) moths are videotaped in three dimensions in a 3‐m long wind tunnel as they fly within a 65‐cm wide plume of pheromone. Moths are presented two floor patterns, either ‘aligned’, a 25‐cm wide ‘trail’ of solid red circles along the tunnel's midline, or ‘offset’, in which the trail veers 25 cm to the left at the tunnel's midpoint. These visual patterns are presented either in a continuous airflow or airflow that is stopped before moths reach the tunnel's halfway point. Moths fly relatively straight paths over the aligned pattern in still air after the wind is stopped. With the offset pattern in wind and when the wind is stopped, moths swerve towards the offset pattern before again progressing along the plume. Prominent visual cues appear to ‘collimate’ (i.e. align with a directional cue) the moth's course as long as the moth remains in contact with pheromone. In wind, these moths appear to favour trajectories that enhance visual feedback, even if the path taken is not directly upwind. During wind lulls, this manoeuvre may enable moths to continue progress towards calling females along a visually set course. The centring of trajectory over prominent visual cues suggests that these moths favour a route that enhances visual feedback.  相似文献   

15.
Although the concept of transfer function is intrinsically related to an input–output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.  相似文献   

16.
The pine cone weevil, Pissodes validirostris Gyll. (Coleoptera: Curculionidae), attacks seed cones of most Eurasian pine species, except these of Swiss stone pine (Pinus cembra L.). Behavioural responses of adult weevils to cone volatile emissions of Swiss stone pine and to those of a common host, mountain pine (Pinus uncinata Ram.), were compared in an olfactometer. Weevils were significantly attracted by the volatile blend emitted by mountain pine, but Swiss stone pine volatiles elicited an inverse response, with most weevils moving in the opposite direction to the odour source. However, the majority of second instar weevil larvae that were extracted from mountain pine cones and transferred into Swiss stone pine cones were capable of developing to the adult stage. This suggests that Swiss stone pine cones do not contain strong feeding deterrents that could prevent larval development. The possible factors involved in the absence of colonization of Swiss stone pine cones by cone weevils are discussed.  相似文献   

17.
Anemotaxis in adult larder beetles, Dermestes ater,was investigated using a locomotion compensator, to uncover the mechanism(s) by which beetles maintain a course direction relative to a wind stimulus. Compared to walking in still air, anemotactically orienting beetles walk with the following characteristics over 60-s periods: (1) reduced locomotor and turning rates, (2) sustained, relatively straight paths with course directions at various angles to the wind, and (3) an increased tendency to stop for brief periods. Differences in wind speed affect mainly path straightness, which increases positively with stimulus intensity. Beetles track the wind direction equally well moving up or downwind, and they are able to orient at angles either close to the wind or at more oblique angles. When the wind direction was shifted 90°, the beetles turned, usually over the short angle, to their previous course heading relative to the stimulus. Indvidual beetles exhibited preferred course directions over several trials within a period of 20 min. Each beetle regained its particular anemotactic angle after the 90° shift in the stimulus direction. Although the beetles paused in some trials, stopping was not required to reorient to the altered stimulus direction.  相似文献   

18.
Odor source localization is an important animal behavior. Male moths locate mates by tracking sex pheromone emitted by conspecific females. During this type of behavior, males exhibit a combination of upwind surge and zigzagging flight. Similarly, the male walking moth Bombyx mori responds to transient pheromone exposure with a surge in movement, followed by sustained zigzagging walking. The initial surge direction is known to be influenced by the pheromone input pattern. Here, we identified the sensory input patterns that determine the initial walking direction of males. We first quantified the stimulus by measuring electroantennogram values, which were used as a reference for subsequent tests. We used a brief stimulus pulse to examine the relationship between sensory stimulus patterns and the turning direction of initial surge. We found that the difference in input timing and intensity between left and right antennae affected the walking direction, indicating that B. mori integrate bilateral pheromone information during orientation behavior. When we tested pheromone stimulation for longer periods, turning behavior was suppressed, which was induced by stimulus cessation. This study contributes toward understanding efficient strategies for odor-source localization that is utilized by walking insects.  相似文献   

19.
The purpose of this study was to explore the effects of direction of exertion (DOE) (pushing, pulling), path (walking in a straight line, turning left, walking uphill), and load placement (LP) (the 18 blocks were indicated by X, Y and Z axis; there were 3 levels on the X axis, 2 levels on the Y axis, and 3 levels on the Z axis) on muscle activity and ratings of perceived exertion in nursing cart pushing and pulling tasks. Ten participants who were female students and not experienced nurses were recruited to participate in the experiment. Each participant performed 108 experimental trials in the study, consisting of 2 directions of exertion (push and pull), 3 paths, and 18 load placements (indicated by X, Y and Z axes). A 23kg load was placed into one load placement. The dependent variables were electromyographic (EMG) data of four muscles collected bilaterally as follows: Left (L) and right (R) trapezius (TR), flexor digitorum superficialis (FDS), extensor digitorum (ED), and erector spinae (ES) and subjective ratings of perceived exertion (RPE). Split-split-plot ANOVA was conducted to analyze significant differences between DOE, path, and LP in the EMG and RPE data. Pulling cart tasks produced a significantly higher activation of the muscles (RTR:54.4%, LTR:50.3%, LFDS:57.0%, LED:63.4%, RES:40.7%, LES:36.7%) than pushing cart tasks (RTR:42.4%, LTR:35.1%, LFDS:32.3%, LED:55.1%, RES:33.3%, LES:32.1%). A significantly greater perceived exertion was found in pulling cart tasks than pushing cart tasks. Significantly higher activation of all muscles and perceived exertion were observed for walking uphill than walking in a straight line and turning left. Significantly lower muscle activity of all muscles and subject ratings were observed for the central position on the X axis, the bottom position on the Y axis, and the posterior position on the Z axis. These findings suggest that nursing staff should adopt forward pushing when moving a nursing cart, instead of backward pulling, and that uphill paths should be avoided in the design of work environments. In terms of distribution of the load in a nursing cart, heavier materials should be positioned at bottom of the cabinet, centered on the horizontal plane and close to the handle, to reduce the physical load of the nursing staff.  相似文献   

20.
Ulrich Sinsch 《Oecologia》1988,76(3):390-398
Summary The migratory behaviour of the toad Bufo bufo was studied from February 1985 to April 1986 in the submontane region of Bavaria, West Germany. Toads were fitted with a mechanical tracking device to record individual paths of migration. Three aspects of migratory behaviour were quantified: orientation in relation to the breeding site, straightness of path, and locomotory activity. The annual activity period began with migration from the hibernation sites to the breeding pond in April. The paths went straight towards the breeding pond independent of the distance (70–420 m). During the period of oviposition the preference for the breeding site direction vanished and toads moved away from the breeding pond, but in less straight paths than before. In summer migratory activity decreased considerably and was restricted to small areas, the home ranges, at distances of 55–1600 m from the natal breeding pond. The straightness of path was rather low, because toads often returned to their starting points. During rainy nights toads occasionally left their home ranges for extensive excursions. In autumn most toads again migrated towards the breeding pond, but paths were significantly less straight and direct than in spring. However, toads stopped before reaching the breeding pond and hibernated in holes or under the leaf layer. The mortality rate of tracked toads was about 45%. The relative influence of 17 environmental variables on locomotory activity was evaluated by principal component analysis and stepwise multiple regression. Temperature at night and rainfall variables accounted for significant amounts of variance, whereas temperature by day, air humidity, and atmospheric pressure showed no correlation. Activity decreased if temperature approached 0° C or after long periods without rainfall. Within a certain range of tolerance, however, the locomotory activity of the toads was widely independent of environmental factors, indicating that endogeneous factors are more important sources of variation in the migratory behaviour of these toads than commonly assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号