首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α?=?0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α?=?0.44, neutral selection), but low for large pallid sturgeon (α?=?0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.  相似文献   

2.
A total of 35, age 1 juvenile Kootenay River white sturgeon ( Acipenser transmontanus ), were fitted with sonic tags in 2005 and released as part of larger hatchery release groups at five sites to evaluate dispersal and subsequent movements (seven tags per site). Juvenile sturgeon released at three locations within the deep, low gradient reach (typical gradient of 0.02 m km−1 and velocities of <0.4 m s−1) of the Kootenay River below Bonners Ferry, ID showed substantial dispersal both up and downstream; however, downstream redistribution was more common. White sturgeon from all three release locations overlapped during dispersal, with 9% of tagged fish moving from river release sites into Kootenay Lake. The three hatchery release locations in this low gradient reach produced good dispersal of hatchery progeny into available habitats. Tagged fish released above Bonners Ferry in the shallow, higher gradient reach (typical gradient of 0.6 m km−1, and velocities >0.8 m s−1) at two additional sites all moved downstream of the gradient break at Bonners Ferry, ID into the lower gradient reach within 2 months of release. In total, 93% of these tagged fish relocated to the low gradient section within 25 days of release, with some fish undertaking this movement within 1 day. In general, age 1 hatchery release juveniles were mobile and capable of substantial movements.  相似文献   

3.
Predation is a common cause of early life stage mortality in fishes, with reduced risk as individuals grow and become too large to be consumed by gape-limited predatory fishes. Large-bodied species, such as sturgeon, may reach this size-refuge within the first year. However, there is limited understanding of what this size threshold is despite the value of this information for conservation management. We conducted laboratory-based predation experiments on juvenile green sturgeon, Acipenser medirostris, to estimate vulnerability to predation during outmigration from their natal reaches in California to the Pacific Ocean. Two highly abundant and non-native predatory fish species (largemouth bass, Micropterus salmoides, and striped bass, Morone saxatilis) were captured in the wild to be tested with developing juvenile green sturgeon from the UC Davis Green Sturgeon Broodstock Program. Experimental tanks, each containing five predators, received thirty prey for 24-hr exposures. Between sturgeon prey trials, predators were exposed to alternative prey species to confirm predators were exhibiting normal feeding behaviors. In addition to green sturgeon mortality data, trials were video recorded and predatory behaviors were quantified. Overall, these predator species displayed much lower rates of predation on juvenile green sturgeon than alternate prey. Predation decreased with green sturgeon size, and predation risk diminished to zero once sturgeon reached a length threshold of roughly 20–22 cm total length, or between 38% and 58% of predator total length. Behavioral analyses showed low motivation to feed on green sturgeon, with both predators attempting predation less frequently as sturgeon grew. Results of this study imply that optimizing growth rates for larval and juvenile sturgeon would shorten the time in which they are vulnerable to predation. Future experiments should assess predation risk of juvenile green sturgeon by additional predator species common to the Sacramento-San Joaquin watershed.  相似文献   

4.
An experiment was designed to test whether age‐0 shovelnose sturgeon (Scaphirhynchus platorynchus) exhibited predator avoidance behaviour in response to a channel catfish (Ictalurus punctatus) predator. It was hypothesized that shovelnose sturgeon would not exhibit any innate predator avoidance behaviour because previous reports have shown a congener of the shovelnose sturgeon, the pallid sturgeon (S. albus), to be an unfavourable prey item for channel catfish. The results, however, indicated that shovelnose sturgeon generally avoided space occupied by the catfish predator and spent a greater proportion of time in the predator avoidance zone within the experimental tank. Bitten fish, in particular, spent a greater period of time in the predator avoidance zone. Of all sturgeon used in this experiment (N = 30), 73% swam within the fork length (350 mm) of the catfish predator. The results seem to indicate that shovelnose sturgeon were initially oblivious to the risk of predation by the catfish predator, but after interaction (e.g. being chased or bitten) appeared to display predator avoidance behaviour. Predator avoidance behaviour in shovelnose sturgeon may thus be suggested as a learned rather than an innate behaviour.  相似文献   

5.
Mixed-species biofilms, consisting of Klebsiella pneumoniae , Pseudomonas aeruginosa , Pseudomonas fluorescens and Stenotrophomonas maltophilia , were grown in glass flow cells under either laminar or turbulent flow. The biofilms grown in laminar flow consisted of roughly circular-shaped microcolonies separated by water channels. In contrast, biofilm microcolonies grown in turbulent flow were elongated in the downstream direction, forming filamentous 'streamers'. Moreover, biofilms growing in turbulent flow developed extensive patches of ripple-like structures between 9 and 13 days of growth. Using time-lapse microscopic imaging, we discovered that the biofilm ripples migrated downstream. The morphology and the migration velocity of the ripples varied with short-term changes in the bulk liquid flow velocity. The ripples had a maximum migration velocity of 800 μm h−1 (2.2 × 10−7 m s−1) when the liquid flow velocity was 0.5 m s−1 (Reynolds number = 1800). This work challenges the commonly held assumption that biofilm structures remain at the same location on a surface until they eventually detach.  相似文献   

6.
Predation risk can affect habitat selection by water column stream fish and crayfish, but little is known regarding effects of predation risk on habitat selection by benthic fish or assemblages of fish and crayfish. I used comparative studies and manipulative field experiments to determine whether, (1) habitat selection by stream fish and crayfish is affected by predation risk, and (2) benthic fish, water column fish, and crayfish differ in their habitat selection and response to predation risk. Snorkeling was used to observe fish and crayfish in, (1) unmanipulated stream pools with and without large smallmouth bass predators (Micropterus dolomieui >200 mm total length, TL) and (2) manipulated stream pools before and after addition of a single large smallmouth bass, to determine if prey size and presence of large fish predators affected habitat selection. Observations of microhabitat use were compared with microhabitat availability to determine microhabitat selection. Small fish (60–100 mm TL, except darters that were 30–100 mm TL) and crayfish (40–100 mm rostrum to telson length; TL) had significantly reduced densities in pools with large bass, whereas densities of large fish and crayfish (> 100 mm TL) did not differ significantly between pools with and without large bass. Small orangethroat darters (Etheostoma spectabile), northern crayfish (Orconectes virilis), and creek chubs (Semotilus atromaculatus) showed significantly greater densities in pools without large bass. The presence of large smallmouth bass did not significantly affect depths selected by fish and crayfish, except minnows, which were found significantly more often at medium depths when bass were present. Small minnows and large and small crayfish showed the greatest response to additions of bass to stream pools by moving away from bass locations and into shallow water. Small darters and sunfish showed an intermediate response, whereas large minnows showed no significant response to bass additions. Response to predation risk was dependent on prey size and species, with preferred prey, crayfish and small minnows, showing the greatest response. Small benthic fish, such as darters, are intermediate between small water column fish and crayfish and large water column fish in their risk of predation from large smallmouth bass.  相似文献   

7.
The prolonged swimming speed and metabolic rate of 0+ year Arctic grayling Thymallus articus were examined with respect to current velocity, water temperature and fish size, and compared to conditions fish occupy in the river. Oxygen consumption (mg O2 h−1) increased with fish mass and temperature (6–23° C), with a steep increase in metabolic rate between 12 and 16° C. Absolute prolonged swimming speed (cm s−1) increased rapidly with fish size (total length, L T, and mass), however, fish in the natural stream habitat occupied current velocities between 15 and 25 cm s−1 or 4  L T s−1, approximately half their potential prolonged swimming speed (10  L T s−1).  相似文献   

8.
The external heat ratio method is described for measurement of low rates of sap flow in both directions through stems and other plant organs, including fruit pedicels, with diameters up to 5 mm and flows less than 2 g h−1. Calibration was empirical, with heat pulse velocity ( v h) compared to gravimetric measurements of sap flow. In the four stem types tested ( Actinidia sp. fruit pedicels, Schefflera arboricola petioles, Pittosporum crassifolium stems and Fagus sylvatica stems), v h was linearly correlated with sap velocity ( v s) up to a v s of approximately 0.007 cm s−1, equivalent to a flow of 1.8 g h−1 through a 3-mm-diameter stem. Minimum detectable v s was approximately 0.0001 cm s−1, equivalent to 0.025 g h−1 through a 3-mm-diameter stem. Sensitivity increased with bark removal. Girdling had no effect on short-term measurements of in vivo sap flow, suggesting that phloem flows were too low to be separated from xylem flows. Fluctuating ambient temperatures increased variability in outdoor sap flow measurements. However, a consistent diurnal time-course of fruit pedicel sap flow was obtained, with flows towards 75-day-old kiwifruit lagging behind evaporative demand and peaking at 0.3 g h−1 in the late afternoon.  相似文献   

9.
Endurance swimming of diploid and triploid Atlantic salmon   总被引:1,自引:0,他引:1  
When groups of diploid (mean ±  s . e . fork length, L F) 33·0 ± 1·4 cm and triploid (35·3 ± 0·5 cm) Atlantic salmon Salmo salar were forced to swim at controlled speeds in a carefully monitored 10 m diameter 'annular' tank no significant difference was found between the maximum sustained swimming speeds ( U ms, maintainable for 200 min) where the fish swam at the limit of their aerobic capability. Diploids achieved 2·99 body lengths per second (bl s−1)(0·96 m s−1) and triploids sustained 2·91 bl s−1(1·02 m s−1). The selection of fish for the trials was based on their ability to swim with a moving pattern projected from a gantry rotating at the radius of the tank and the selection procedure did not prove to be significant by ploidy. A significant difference was found between the anaerobic capabilities of the fish measured as endurance times at their prolonged swimming speeds. During the course of the experimentation the voluntary swimming speed selected by the fish increased and the schooling behaviour improved. The effect of the curvature of the tank on the fish speeds was calculated (removing the curved effect of the tank increased the speed in either ploidy by 5·5%). Implications of the endurance times and speeds are discussed with reference to the aquaculture of triploid Atlantic salmon.  相似文献   

10.
Abstract:  The influence of three solanaceous plants (tomato, sweet pepper and eggplant) on the functional response of the predatory bug Picromerus bidens to densities of fourth-instar larvae of the beet armyworm Spodoptera exigua was assessed. Logistic regression indicated a type II functional response on all host plants. Over all prey densities, P. bidens killed significantly fewer fourth instars of S. exigua on tomato than on sweet pepper or eggplant (1.96 ± 0.17 vs. 4.37 ± 0.19 and 3.90 ± 0.15 larvae per predator per 24 h respectively). A higher theoretical maximum predation rate was estimated on sweet pepper (11.1 prey larvae per day) and eggplant (7.4) than on tomato (5.4). The mean number of prey killed per day by P. bidens females ranged from 0.78 at a density of one prey on tomato to 8.45 at a density of 24 prey on sweet pepper. The data indicated that the estimates of handling time ( T h) and attack rate ( a ) were highly affected by host plant. Based on asymptotic 95% confidence intervals, a lower attack coefficient was found on tomato (0.02 h−1) than on sweet pepper or eggplant (0.07 and 0.11 h−1 respectively). On the other hand, handling times were significantly longer on tomato (4.42 h) and eggplant (3.23 h) than on sweet pepper (2.15 h). This laboratory study suggests that plant characteristics influence the ability of P. bidens to respond to changes in prey density.  相似文献   

11.
We developed a trophic dynamic model of key populations and processes in the New River, West Virginia, to identify the mechanisms most responsible for maintaining food web structure. Key populations were represented by thirteen model components and were aquatic insects; age-1 and age-2 crayfish (three species); age-1 and age-2 hellgrammites (Corydalus cornutus larvae); non-game fishes; age-0, age-1, and adult smallmouth bass (Micropterus dolomieu); age-0, age-1, and adult rock bass (Ambloplites rupestris); and age-0, age-1 to age-3, and adult flathead catfish (Pylodictis olivaris). In this system, crayfish and hellgrammites are harvested to provide bait for the recreational fishery that extensively exploits the three predatory fish species. Predation and intraspecific regulation were represented with nonlinear algorithms, and linear terms represented fishery harvests. Interspecific competition among components occurred through predation on shared prey. Error analysis of the model suggested that predation was the most important mechanism in maintaining system structure (the disposition of biomass among system components). Further, the trophic relation between each component and its prey accounted for 34–64% of the variability in food web structure, whereas predation on each component explained 1–24% of food web structure variability. Therefore, so-called ‘bottom-up’ effects were more influential than ‘top-down’ effects. Interspecific competition and intraspecific regulation had secondary roles in maintaining New River food web structure, although intraspecific regulation was most important to aquatic insects, which were not predatory in our model. Both forms of competition are probably tempered by extensive predation and exploitation in the New River system. Exploitation was a secondary structuring agent to adult smallmouth bass, which experience a high rate of harvest in the New River.  相似文献   

12.
Synopsis We compared survival, growth, and swimming performance of two size classes of age-0 largemouth bass, Micropterus salmoides, in the spring after being fed diets of bluegill, Lepomis macrochirus, fathead minnows, Pimephales promelas, or invertebrate prey during the winter. Regardless of prey assemblage, survival was uniformly high and independent of size. Length, wet- and dry-mass, and condition was also similar among treatments for both size classes. However, variation in individual performance differed, with the lowest variability in growth occurring among small age-0 largemouth bass in the invertebrate only treatment. Absolute and length corrected swimming speeds of largemouth bass were highest for invertebrate prey assemblages, intermediate for fathead minnow prey, and lowest for bluegill prey. The patterns in growth and spring swimming performance likely reflect the varied nutritive quality of different prey, the ability of largemouth bass to capture different prey, and competition with the piscine prey.  相似文献   

13.
We conducted a series of size-structured laboratory experiments to quantify and compare the susceptibility of several estuarine and marine forage fishes to attack and capture by piscivorous predators. Size-dependent estimates of capture success, handling time, and prey profitability were generated from single-species experiments offering bay anchovy, Atlantic menhaden, Atlantic silverside, and age-0 striped bass to piscivores. Bay anchovy and Atlantic menhaden were most susceptible to capture and yielded high profitability compared to Atlantic silverside and age-0 striped bass prey. Variation in capture success among forage species was particularly influential in generating disparate profitability functions. Although morphological differences among forage species contributed to variation in susceptibility to predation, behavioral analyses indicated that variable reaction distances to approaching predators and activity levels of prey may explain a large fraction of the observed differences in susceptibility. When several forage species were offered to predators simultaneously in larger enclosures, mortality was highest and occurred earlier for bay anchovy and Atlantic menhaden compared to other prey, which points to the strong influence of predator capture success on overall forage fish vulnerability. Our results demonstrate species-specific differences among forage fishes in the ability to avoid attack and capture by piscivores, and we conclude that the expression of antipredator behaviors contributes significantly to variation in forage species vulnerability.  相似文献   

14.
F.P. Gelwick 《Oecologia》2000,125(4):573-583
Non-lethal effects of predators on prey behavior can mediate trophic cascades, but the extent of effects depends on habitat characteristics and risk sensitivity of prey. Furthermore, predation risk for stream organisms varies along the depth gradient and strongly influences their behavior. Grazing minnows (Campostoma anomalum) and crayfish (Orconectes virilis) are both prey for largemouth bass (Micropterus salmoides) in streams, but differ in their predator-avoidance behavior. This study contrasts the effects and mechanisms of non-lethal trophic cascades on the spatial distribution of filamentous green algae among stream pools and along a depth gradient within pools. Presence/absence of a largemouth bass was crossed with four combinations of the two grazer species (0 grazers, 30 minnows, 30 crayfish, and 15 each) in outdoor, experimental streams. Grazer densities were maintained by restocking. I used geostatistics to quantify spatial patterns of predator and grazer habitat use, height of filamentous algae in the water column, and spatial covariation of water depth with algal height, and depth with grazer habitat use. In streams with only minnows, bass were sedentary, and hid within tall algae in a single "bass pool". In pools with grazed algae, bass actively pursued prey within and among pools and used deeper water. This set up a hierarchy of risk to grazers along the depth gradient from bass in deep water to potential risk from terrestrial predators in shallow water. Thus, minnows were more sensitive than crayfish to predation risk from bass, but less sensitive than crayfish to risk from terrestrial predators. Minnows mediated cascades at the scale of whole pools by avoiding "bass pools", but only if crayfish were absent. Crayfish avoided potential interactions both with terrestrial predators and bass by grazing and burrowing in deeper water at night (when bass were inactive), and by hiding in burrows during daytime. Crayfish without burrows avoided bass and crayfish defending burrows by using shallow edges of pools as corridors, but did not graze there. Thus, crayfish-mediated cascades were limited to pool edges. Effects of grazer identity may extend to other consumers via modification of risk for biota that use filamentous algae as either foraging or refuge habitat.  相似文献   

15.
White sturgeon, Acipenser transmontanus (Richardson), are at risk of entrainment from dredging, with young-of-the-year fish at greatest risk. To evaluate this entrainment risk, swimming performance trials were conducted in a laboratory swim tunnel with hatchery-reared juvenile white sturgeon with varying experience levels including: naïve (only tested once), tested (re-tested after being kept in no flow) and trained (re-tested after kept in flow for nearly three weeks). Individuals of various sizes (80–100 mm TL) and all experience levels were strongly rheotactic (> 80%), but endurance was highly variable among fish. Small juveniles [< 82 mm total length (TL)] had lower escape speeds (< 40 cm s−1) than medium (82–92 mm TL) and large (> 93 mm TL) naïve fish (42–45 cm s−1), all of which had lower escape speeds than trained fish (72 cm s−1). Behavior was also highly variable among fish. Overall, benthic station-holding behaviors were least frequent in small fish, intermediate in medium and large fish, and most frequent in trained large fish. Probability of entrainment of juvenile white sturgeon can be reduced by maintaining dredge head flow fields at less than 45 cm s−1 for wild-spawned fish or by rearing hatchery fish to > 93 mm TL and exposing the fish to moderate flow velocities (10–12 cm s−1) prior to their release.  相似文献   

16.
Plasma cortisol responses of pallid sturgeon Scaphirhynchus albus and yellow perch Perca flavescens following injection with equal doses of lipopolysaccharide were compared. Concentrations of cortisol in plasma from pallid sturgeon did not change following injection (6·0–11·0 v. 6·4 ng l−1 pre-stress) while in yellow perch plasma they were shown to increase up to 6 h (117·0 v. 9·8 ng l−1 pre-stress) after the injection. These results are consistent with other reports for pallid sturgeon that illustrate a reduced cortisol response following other applied stressors relative to teleosts and suggest differences in the expression and regulation of their inflammatory responses.  相似文献   

17.
A wide diversity of aquatic organisms release chemical alarm cues upon encountering or being attacked by a predator. These alarm cues can be used by nearby individuals to assess local predation risk. Receivers warned by chemical alarm cues gain a survival benefit when encountering predators. Animals that are in the same prey guild (i.e. that co‐occur and share the same predators) may learn to recognize each others’ chemical alarm cues. This ability may confer an adaptive advantage if the prey animals are vulnerable to the same predators. However, if the prey grow to different sizes and as a consequence are no longer vulnerable to the same suite of predators, then there should no longer be an advantage for the prey to respond to each others’ alarm cues. In this study, we exposed small and large fathead minnows (Pimephales promelas) to cues from syntopic injured damselfly larvae (Enallagma boreale), cues from injured mealworm larvae (Tenebrio molitor) and to distilled water. Small minnows exhibited antipredatory behaviour and increased shelter use in response to injured damselfly cues but not to the controls of injured mealworm or distilled water. On the contrary, large minnows exhibited no significant change in shelter use in response to any of the injured cues. These data demonstrate that fathead minnows exhibit an antipredator response to damselfly alarm cues, but only when minnows are small and members of the same prey guild as damselfly larvae. These results demonstrate the considerable flexibility in the responses to heterospecific alarm cues.  相似文献   

18.
Synopsis Behavior of largemouth bass, Micropterus salmoides, and northern pike, Esox lucius, foraging on fathead minnows, Pimephales promelas, or bluegills, Lepomis macrochirus, was quantified in pools with 50% cover (half the pool had artificial stems at a density of 1000 stems m−2). Both predators spent most of their time in the vegetation. Largemouth bass searched for bluegills and ambushed minnows, whereas the relatively immobile northern pike ambushed all prey. Minnows were closer to predators and were captured more frequently than bluegills. Even when minnows dispersed, they moved continually and eventually wandered within striking distance of a predator. Bluegills dispersed in the cover with predators. Bass captured the few bluegills that strayed into the open and pike captured those that approached too closely in the cover. The ability of predators to capture prey while residing in habitats containing patches of dense cover may explain their residence in areas often considered to be poor ones for foraging. The unit is sponsored jointly by the United States Fish and Wildlife Service, Ohio Department of NaturalResources, The Ohio State University, and the Wildlife Management Institute  相似文献   

19.
Survival to hatching was determined after electroshocking embryos of largemouth bass Micropterus salmoides , bluegill Lepomis macrochirus and channel catfish Ictalurus punctatus . Embryos at different developmental stages were exposed for 20 s to homogeneous electric fields (4–16 V cm−1) of direct current (DC) or 60 or 120 Hz pulsed direct current (PDC) in water of 100 μS cm−1 ambient conductivity. For all species, DC reduced survival of embryos at developmental stages before, during, or soon after epiboly; but survival did not differ from controls during later developmental stages. Survival of largemouth bass and bluegill was not reduced by 60 or 120 Hz PDC except for bluegill exposed at 12 h post‐fertilization. Channel catfish embryo survival was <5% when exposed to 60 or 120 Hz PDC at 8 h post‐fertilization, survival improved for embryos exposed at 67 h to 60 Hz but not to 120 Hz, and all embryos survived exposure to PDC at 150 h post‐fertilization. Exposure durations as short as 5 s resulted in <10% survival of largemouth bass during sensitive stages. All bluegill embryos aged 22 h post‐fertilization hatched prematurely after exposure to 16 V cm−1 DC, but survival was not affected. The use of PDC for electroshocking near largemouth bass and bluegill nests could reduce the negative effects on survival of these species; however, PDC can reduce survival of channel catfish embryos.  相似文献   

20.
The effect of feeding level ( F L; 0·5 to 4% dry diet mass per wet fish body mass) and feeding frequency (once every 4 days to twice per day) on postprandial metabolic response was investigated in southern catfish Silurus meridionalis at 27·5° C. The results showed that there was no significant difference in the specific dynamic action (SDA) coefficient among the groups of different feeding levels ( P  > 0·05). The duration increased from 26·0 to 40·0 h and the peak metabolic rate increased from 207·8 to 378·8 mg O2 kg−1 h−1 when the feeding level was increased from 0·5 to 4%. The relationship between the peak metabolic rate ( R P, mg O2 kg−1 h−1) and F L could be described as: R P = 175·4 + 47·3 F L( r 2 = 0·943, n  = 40, P  < 0·001). The relationship between the SDA duration ( D , h) and F L could be described as D =30·97 F L0·248 ( r 2=0·729, n =40, P  < 0·001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号