首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed an in vitro nuclear protein import reaction from semi- intact yeast cells. The reaction uses cells that have been permeabilized by freeze-thaw after spheroplast formation. Electron microscopic analysis and antibody-binding experiments show that the nuclear envelope remains intact but the plasma membrane is perforated. In the presence of ATP and cytosol derived from yeast or mammalian cells, a protein containing the nuclear localization sequence (NLS) of SV40 large T-antigen is transported into the nucleus. Proteins with mutant NLSs are not imported. In the absence of cytosol, binding of NLS- containing proteins occurs at the nuclear envelope. N-ethylmaleimide treatment of the cytosol as well as antibodies to the nuclear pore protein Nsp1 inhibit import but not binding to the nuclear envelope. Yeast mutants defective in nuclear protein transport were tested in the in vitro import reaction. Semi-intact cells from temperature-sensitive nsp1 mutants failed to import but some binding to the nuclear envelope was observed. On the other hand, no binding and thus no import into nuclei was observed in semi-intact nsp49 cells which are mutated in another nuclear pore protein. Np13 mutants, which are defective for nuclear protein import in vivo, were also deficient in the binding step under the in vitro conditions. Thus, the transport defect in these mutants is at the level of the nucleus and the point at which nuclear transport is blocked can be defined.  相似文献   

2.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

3.
The nuclear import of proteins typically requires the presence of a nuclear localization sequence (NLS). Some proteins have more than one NLS, but the significance of having multiple NLSs is unclear. The enzyme 5-lipoxygenase (5-LO) has three NLSs that, unlike the tight cluster of basic residues of the classical SV40 large T antigen NLS, contain dispersed basic residues. When attached to green fluorescent protein (GFP), individual 5-LO NLSs caused quantitatively and statistically less import than the SV40 NLS. Combined 5-LO NLSs produced nuclear import that was comparable to that of the SV40 NLS. As expected, GFP/NLS proteins displayed relatively uniform import in all cells. However, a fusion protein of GFP plus the 5-LO protein, modified to contain only one functional NLS, produced some cells with import and some cells without import. A GFP/5-LO fusion protein containing two functional NLSs produced four identifiable levels of nuclear import. Quantitative and visual analysis of a population of cells expressing the intact GFP/5-LO protein, with three intact NLSs, indicated five levels of nuclear import. This suggested that the subcellular distribution of 5-LO may vary widely in normal cells of the body. Consistent with this, immunohistochemical staining of lung sections found that individual macrophages, in situ, displayed cell-specific levels of import of 5-LO. Since nuclear accumulation is known to affect 5-LO activity, multiple NLSs may allow graded regulation of activity via controlled import. Multiple NLSs on other proteins may likewise allow fine control of protein action through modulation of the level of import.  相似文献   

4.
Replication of the RNAs of influenza virus occurs in the nucleus of infected cells. The nucleoprotein (NP) has been shown to be important for the import of the viral RNA into the nucleus and has been proposed to contain at least three different nuclear localization signals (NLSs). Here, an import assay in digitonin-permeabilized cells was used to further define the contribution of these NLSs. Mutation of the unconventional NLS impaired the nuclear import of the NP. A peptide bearing the unconventional NLS could inhibit the nuclear import of the NP in this import assay and prevent the NP-karyopherin alpha interaction in a binding assay confirming the crucial role of this signal. Interestingly, a peptide containing the SV40 T antigen NLS was unable to inhibit the nuclear import of NP or the NP-karyopherin alpha interaction, suggesting that the NP and the SV40 T antigen do not share a common binding site on karyopherin alpha. We also investigated the question of which NLS(s) is/are necessary for the viral ribonucleoprotein complex to enter the nucleus. We found that the peptide containing the unconventional NLS efficiently inhibited the nuclear import of the ribonucleoprotein complexes. This finding suggests that the unconventional NLS is the major signal necessary not only for the nuclear transport of free NP but also for the import of the ribonucleoprotein complexes. Finally, viral replication could be specifically inhibited by a membrane-permeable peptide containing the unconventional NLS, confirming the crucial role of this signal during the replicative cycle of the virus.  相似文献   

5.
Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.  相似文献   

6.
Replication of human immunodeficiency virus type 1 (HIV-1) in non-dividing cells critically depends on import of the viral pre-integration complex into the nucleus. Genetic evidence suggests that viral protein R (Vpr) and matrix antigen (MA) are directly involved in the import process. An in vitro assay that reconstitutes nuclear import of HIV-1 pre-integration complexes in digitonin-permeabilized cells was used to demonstrate that Vpr is the key regulator of the viral nuclear import process. Mutant HIV-1 pre-integration complexes that lack Vpr failed to be imported in vitro, whereas mutants that lack a functional MA nuclear localization sequence (NLS) were only partially defective. Strikingly, the import defect of the Vpr- mutant was rescued when recombinant Vpr was re-added. In addition, import of Vpr- virus was rescued by adding the cytosol of HeLa cells, where HIV-1 replication had been shown to be Vpr-independent. In a solution binding assay, Vpr associated with karyopherin alpha, a cellular receptor for NLSs. This association increased the affinity of karyopherin alpha for basic-type NLSs, including that of MA, thus explaining the positive effect of Vpr on nuclear import of the HIV-1 pre-integration complex and BSA-NLS conjugates. These results identify the biochemical mechanism of Vpr function in transport of the viral pre-integration complex to, and across, the nuclear membrane.  相似文献   

7.
8.
9.
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein.  相似文献   

10.
Importin-alpha is the nuclear import receptor that recognizes cargo proteins carrying conventional basic monopartite and bipartite nuclear localization sequences (NLSs) and facilitates their transport into the nucleus. Bipartite NLSs contain two clusters of basic residues, connected by linkers of variable lengths. To determine the structural basis of the recognition of diverse bipartite NLSs by mammalian importin-alpha, we co-crystallized a non-autoinhibited mouse receptor protein with peptides corresponding to the NLSs from human retinoblastoma protein and Xenopus laevis phosphoprotein N1N2, containing diverse sequences and lengths of the linker. We show that the basic clusters interact analogously in both NLSs, but the linker sequences adopt different conformations, whereas both make specific contacts with the receptor. The available data allow us to draw general conclusions about the specificity of NLS binding by importin-alpha and facilitate an improved definition of the consensus sequence of a conventional basic/bipartite NLS (KRX10-12KRRK) that can be used to identify novel nuclear proteins.  相似文献   

11.
Importin-alpha is a cytosolic receptor that recognizes classical Nuclear Localization Signals (NLSs) and mediates import into the nucleus. We have used a number of methods to investigate the aggregation state of Xenopus importin-alpha both as a recombinant, purified protein and in cytosolic extracts. We have found that recombinant importin-alpha aggregates at a protein concentration similar to that estimated to be present in the Xenopus cytoplasm, and that the importin-alpha aggregation is relieved by NLS peptide binding, with the importin-alpha then binding the NLS as a monomer. We have also found that in HeLa cytosolic extracts, importin-alpha is present in an aggregated form. Similarly to the purified importin-alpha aggregation, NLS peptides relieve the aggregation of importin-alpha in the cytosol. These observations indicate that aggregation of importin-alpha in the cytosol may be an intrinsic property of the import receptor and may be functionally related to NLS binding.Our results suggest a novel mechanism for NLS recognition, whereby NLSs mediate disassembly of importin-alpha aggregates in the cytosol.  相似文献   

12.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

13.
S A Adam  L Gerace 《Cell》1991,66(5):837-847
We have purified two major polypeptides of 54 and 56 kd from bovine erythrocytes that specifically bind the nuclear location sequence (NLS) of the SV40 large T antigen. When added to a permeabilized cell system for nuclear import, the purified proteins increase by 2- to 3-fold the nuclear accumulation of a fluorescent protein containing the large T antigen NLS. The import stimulation is saturable and dependent upon the presence of cytosol. Nuclear protein accumulation in vitro is sensitive to inactivation by N-ethylmaleimide (NEM). NEM inactivation can be overcome by addition of the purified NLS-binding proteins to the import system. NEM treatment of the purified proteins abolishes their ability to stimulate import but does not affect NLS binding. Our results indicate that the NLS-binding proteins are NEM-sensitive receptors for nuclear import. At least one other NEM-sensitive cytosolic activity and an NEM-insensitive cytosolic activity are also necessary for protein import in vitro.  相似文献   

14.
Human mismatch repair proteins MSH2-MSH6 play an essential role in maintaining genetic stability and preventing disease. While protein functions have been extensively studied, the substantial amino-terminal region (NTR*) of MSH6 that is unique to eukaryotic proteins, has mostly evaded functional characterization. We demonstrate that a cluster of three nuclear localization signals (NLS) in the NTR direct nuclear import. Individual NLSs are capable of partially directing cytoplasmic protein into the nucleus; however only cooperative effects between all three NLSs efficiently transport MSH6 into the nucleus. In striking contrast to yeast and previous assumptions on required heterodimerization, human MSH6 does not determine localization of its heterodimeric partner, MSH2. A cancer-derived mutation localized between two of the three NLS significantly decreases nuclear localization of MSH6, suggesting altered protein localization can contribute to carcinogenesis. These results clarify the pending speculations on the functional role of the NTR in human MSH6 and identify a novel, cooperative nuclear localization signal.  相似文献   

15.
The activation of the pleomorphic adenoma gene 1 (PLAG1) is the most frequent gain-of-function mutation found in pleomorphic adenomas of the salivary glands. To gain more insight into the regulation of PLAG1 function, we searched for PLAG1-interacting proteins. Using the yeast two-hybrid system, we identified karyopherin alpha2 as a PLAG1-interacting protein. Physical interaction between PLAG1 and karyopherin alpha2 was confirmed by an in vitro glutathione S-transferase pull-down assay. Karyopherin alpha2 escorts proteins into the nucleus via interaction with a nuclear localization sequence (NLS) composed of short stretches of basic amino acids. Two putative NLSs were identified in PLAG1. The predicted NLS1 (KRKR) was essential for physical interaction with karyopherin alpha2 in glutathione S-transferase pull-down assay, and its mutation resulted in decreased nuclear import of PLAG1. Moreover, NLS1 was able to drive the nuclear import of the cytoplasmic protein beta-galactosidase. In contrast, predicted NLS2 of PLAG1 (KPRK) was not involved in karyopherin alpha2 binding nor in its nuclear import. The residual nuclear import of PLAG1 after mutation of the NLS1 was assigned to the zinc finger domain of PLAG1. These observations indicate that the nuclear import of PLAG1 is governed by its zinc finger domain and by NLS1, a karyopherin alpha2 recognition site.  相似文献   

16.
Mediated import of proteins into the nucleus requires cytosolic factors and can be blocked by reagents that bind to O-linked glycoproteins of the nuclear pore complex. To investigate whether a cytosolic transport factor directly interacts with these glycoproteins, O-linked glycoproteins from rat liver nuclear envelopes were immobilized on Sepharose beads via wheat germ agglutinin or specific antibodies. When rabbit reticulocyte lysate (which provides cytosolic factors required for in vitro nuclear import) was incubated with the immobilized glycoproteins, the cytosol was found to be inactivated by up to 80% in its ability to support mediated protein import in permeabilized mammalian cells. Inactivation of the import capacity of cytosol, which was specifically attributable to the glycoproteins, involves stoichiometric interactions and is likely to involve binding and depletion of a required factor from the cytosol. This factor is distinct from an N-ethylmaleimide-sensitive receptor for nuclear localization sequences characterized recently since it is insensitive to N-ethylmaleimide. Cytosol inactivation is suggested to be caused by at least two proteins of the glycoprotein fraction, although substantial capacity for inactivation can be attributed to protein bound by the RL11 antibody, consisting predominantly of a 180-kD glycosylated polypeptide. Considered together, these experiments identify a novel cytosolic factor required for nuclear protein import that directly interacts with O-linked glycoproteins of the pore complex, and provide a specific assay for isolation of this component.  相似文献   

17.
We recently showed that a nuclear location signal (NLS)-containing karyophile forms a stable complex with cytoplasmic components for nuclear pore-targeting The complex, termed nuclear pore-targeting complex (PTAC), contained two essential proteins of 54 and 90 kDa, respectively, as estimated by electrophoresis. In this study, we found that the 54 kDa component of PTAC is the mouse homologue of Xenopus importin (m-importin). Cytoplasmic injection of the antibodies raised against recombinant m-importin showed an inhibitory effect on nuclear import of a karyophile in living mammalian cells. A portion of cytoplasmically injected antibodies migrated rapidly into the nucleus, indicating dynamic movement of this protein across the nuclear envelope. Moreover, the injected antibodies co-precipitated the karyophile, in an NLS-dependent manner, with endogenous m-importin in the cytoplasm. These results provide in vivo evidence that m-importin is involved in nuclear protein import through association with a NLS in the cytoplasm before nuclear pore binding.  相似文献   

18.
To study the mechanism of nuclear import of T-DNA, complexes consisting of the virulence proteins VirD2 and VirE2 as well as single-stranded DNA (ssDNA) were tested for import into plant nuclei in vitro. Import of these complexes was fast and efficient and could be inhibited by a competitor, a nuclear localization signal (NLS) coupled to BSA. For import of short ssDNA, VirD2 was sufficient, whereas import of long ssDNA additionally required VirE2. A VirD2 mutant lacking its C-terminal NLS was unable to mediate import of the T-DNA complexes into nuclei. Although free VirE2 molecules were imported into nuclei, once bound to ssDNA they were not imported, implying that when complexed to DNA, the NLSs of VirE2 are not exposed and thus do not function. RecA, another ssDNA binding protein, could substitute for VirE2 in the nuclear import of T-DNA but not in earlier events of T-DNA transfer to plant cells. We propose that VirD2 directs the T-DNA complex to the nuclear pore, whereas both proteins mediate its passage through the pore. Therefore, by binding to ssDNA, VirE2 may shape the T-DNA complex such that it is accepted for translocation into the nucleus.  相似文献   

19.
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.  相似文献   

20.
To elucidate the function of the U69 protein kinase of human herpesvirus 6 (HHV-6) in vivo, we first analyzed its subcellular localization in HHV-6-infected Molt 3 cells by using polyclonal antibodies against the U69 protein. Immunofluorescence studies showed that the U69 signal localized to the nucleus in a mesh-like pattern in both HHV-6-infected and HHV6-transfected cells. A computer program predicted two overlapping classic nuclear localization signals (NLSs) in the N-terminal region of the protein; this NLS motif is highly conserved in the N-terminal region of most of the herpesvirus protein kinases examined to date. An N-terminal deletion mutant form of the protein failed to enter the nucleus, whereas a fusion protein of green fluorescent protein (GFP) and/or glutathione S-transferase (GST) and the U69 N-terminal region was transported into the nucleus, demonstrating that the predicted N-terminal NLSs of the protein actually function as NLSs. The nuclear transport of the GST-GFP fusion protein containing the N-terminal NLS of U69 was inhibited by wheat germ agglutinin and by the Q69L Ran-GTP mutant, indicating that the U69 protein is transported into the nucleus from the cytoplasm via classic nuclear transport machinery. A cell-free import assay showed that the nuclear transport of the U69 protein was mediated by importin alpha/beta in conjunction with the small GTPase Ran. When the import assay was performed with a low concentration of each importin-alpha subtype, NPI2/importin-alpha7 elicited more efficient transport activity than did Rch1/importin-alpha1 or Qip1/importin-alpha3. These results suggest a relationship between the localization of NPI2/importin-alpha7 and the cell tropism of HHV-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号