首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Leucokinins I-IV did not activate visceral muscles uniformly as a class but rather showed a selective action on the muscles of the hindgut. This organ showed a contractile response to all of the leucokinins at 3 x 10(-10) M that was 5-10% above the mean level of spontaneous activity. The maximum response for each peptide was recorded at 2.1 x 10(-7) M. 2. Both the foregut and the oviduct were 100-1000 fold less sensitive than the hindgut, and each of the former organs required more than 10(-8) M to elicit a detectable excitation. The heart, by comparison, failed to give consistent responses with any of the peptides. 3. The leucokinins caused a protracted excitation of contractile events in the hindgut that lasted for more than 60 min. Moreover, all four peptides evoked contractions from hindguts after membrane depolarization with 158 mM potassium. 4. This result shows that nonsynaptic receptors for the peptides exist in visceral muscle. The leucokinins showed no evidence of facilitating the reentry of calcium into calcium depleted hindgut preparations.  相似文献   

2.
1. Leucomyosuppressin (LMS) did not inhibit the spontaneous contractions of visceral muscles of the cockroach Leucophaea maderae uniformly as a group but rather showed a selective suppression of activity in the foregut and hindgut. The threshold of LMS inhibition for these organs was 10(-11) M for the foregut and 3 x 10(-11) M for the hindgut. The maximum response for each organ was generally recorded at 2.4 x 10(-8) M. 2. Both the heart and the oviduct were 100-1000 times less sensitive to LMS than either the foregut or the hindgut. Although the responses of the heart to LMS (10(-9) to 10(-8) M) were somewhat inconsistent, the myocardium showed a reduction in either the amplitude or frequency of contractions in 75% of the preparations tested. The oviduct showed the lowest level of responsiveness of all the muscles tested. Even at a concentration of 10(-7) M LMS, the amplitude and frequency of contractions showed no more than a 58% inhibition. 3. Desensitization to LMS was observed in three of the four muscle types tested. The phenomenon occurred in 37% of the foreguts, 34% of the hindguts and 54% of the heart preparations tested. The results of this study show that each visceral muscle type has its own unique response profile to LMS and support the idea that peptides may be multifunctional regulators.  相似文献   

3.
4.
5.
Summary The hindgut of the Madeira cockroach contains an intricate network of longitudinal and circular muscles that are distinctive for each region. In the rectum, the longitudinal muscles are symmetrically arranged in 6 distinct bands, while the circular muscles appear as a uniform layer over the rectal pads. In the colon, the muscle fibers are arranged in an irregular lattice with the longitudinal fibers generally superimposed on the circular ones but with an evident weaving between the layers. In addition to these muscle layers, a delicate, superficial network of muscle-like fibers covers many portions of the colon and rectum.In spite of the bewilderingly complex motile activity of deganglionated hindguts, all activity could be classified under 4 basic types after cinematographic analysis: segmentation, compression, peristalsis, or reverse peristalsis or a combination thereof. Although much of the activity that occurred was seemingly random, there was an evident rhythmicity that spontaneously arose and ended in several types of motility during the course of observations. The defined modes of activity seemed to be completely myogenic in nature, as all 4 categories were readily observed in hindguts 30 min after treatment with tetrodotoxin (10–6 g/ml). Each region of the hindgut seemed to have its own particular rhythm.Action potentials were recorded both intracellularly and extracellularly from all regions of the hindgut; amplitude usually ranged between 10 and 20 mV for intracellular recordings, and such spike potentials were often preceded by a slow depolarizing pre-potential. Generally, however, the depolarization was abrupt. Transmembrane potentials from the visceral muscle fibers were never truly at rest. Slow, continuous fluctuations (3–8 mV) were common. At times, plateau-type action potentials were recorded, but generally the repolarization contour was almost linear with time. Contractions were evoked by action potentials but not by the slow, rhythmic fluctuations in the membrane potential.No particular region or structure in the hindgut showed an exclusive pacemaker function. However, there was an evident gradient of increased excitability progressing in an caudal direction from the ileum.In a sodium-free saline, the amplitude of action potentials was remarkable enhanced from 5 to 10 min after the initial change. Even after a 20 min exposure, action potentials were still often present although their frequency and amplitude dropped. Tetrodotoxin (10–6g/ml) had no. pronounced effect on frequency or amplitude of action potentials. However, spike potentials ceased within 1.5 min after exposure to a sodium and calcium-free saline. When such preparations were re-exposed to a sodium-free saline containing normal calcium, the action potentials reappeared, suggesting that calcium might be a current-carrying ion. Although action potentials in a calcium-free medium showed variability, we generally saw a marked reduction in amplitude of potentials within 5 min. We further observed that 2 mM manganous ion completely abolished action potentials within 2 min. Thus, it seems likely that sodium is not the sole current-carrying ion in cockroach hindgut muscle.The authors express their indebtedness to Ms. Susan Swann, Mr. Gerald Holt, Mr. David Owens, and Ms. Mary Strand for their competent technical assistance.  相似文献   

6.
Summary The structural differences between active and inactive corpora allata, visible under the light microscope, become more pronounced under the electron microscope. Aside from differences in cellular and nuclear diameters, and nuclearcytoplasmic ratios, there are qualitative characteristics in ultrastructural organization.The cytoplasm of active corpus allatum cells contains numerous sinuous mitochondria, distinct Golgi elements, ergastoplasmic units with a tendency to form whorls, agranular cytomembranes, and free ribosomes. Pleomorphic inclusion bodies resembling lysosomes are more or less numerous. The plump, ovoid nuclei frequently show two prominent nucleoli whose components may form a meshwork harboring chromatin.The marked reduction in the amount of cytoplasm occurring during the organ's return to inactivity is accompanied by a decrease in the number, and a change in the appearance, of some cytoplasmic organelles. The mitochondria tend to be smaller, and the ergastoplasm is reduced to scattered wisps of ribosome-studded membranes. Nuclei of inactive cells have smaller diameters than those of active ones.In all stages of activity, cell boundaries are clearly visible. As a result, the corpus allatum cell can now be characterized as a discrete unit of epithelioid character and rather complex shape. The plasma membrane may become folded when the cellular content shrinks to the inactive level. Aside from changing outlines, all corpus allatum cells have long, gradually thinning processes. These penetrate deeply into the parenchyma where they interlock with those of other cells; many processes eventually seem to reach the surface of the gland where the secretory products are released into the hemolymph. These have to pass through an acellular connective tissue layer that shares tinctorial and ultrastructural properties with those of a boundary (or basement) membrane.This stromal element forms a sheath and branching processes that extend into and permeate the parenchyma. It seems to represent a system of channels, not only for the release of secretory and other cellular products, but for the entry of nutrients and perhaps chemical messenger substances.Neurosecretory material can be observed in the form of structurally distinctive elements, i.e., as electron-opaque granular inclusions within axon terminals that become contiguous with corpus allatum cells.No definite statement can be made on the basis of the present study about the nature of the corpus allatum hormone or hormones, except that the ultrastructural criteria indicative of proteinaceous secretion, such as the appearance of secretory granules in spatial relation with Golgi elements, seem to be missing in the corpora allata of Leucophaea.Supported by Research Grants A-3984 and B-2145 from the U.S.P.H.S.  相似文献   

7.
Summary On the basis of the occurrence, at the light microscopic level, of alkaline and acid phosphatases, the pigment epithelium covering the posterior surface of the iris in the albino rabbit can be divided into two zones not previously described, viz. a central zone close to the pupil, approximately corresponding to the area occupied by the iridic sphincter muscle, and a peripheral zone extending to the ciliary body. The central zone which is in intimate relation with the lens was found to have a high content of both phosphatases. At the fine structural level it exhibits a marked pinocytotic activity in the epithelium at the interdigitations between adjacent cells. Electron microscopy revealed that acid phosphatase is localized to the walls of the pinocytotic vesicles. Alkaline phosphatase is in evidence at the surface membrane folds and at microvillous processes between the epithelial cells and the adjoining muscle cells. Unlike the distribution of the acid phosphatase, that of the alkaline phosphatase does not differ fundamentally in the two zones at the fine structural level.In a series of dehydrogenases studied, staining with a view to succinic-, isocitric- and glucose-6-phosphate dehydrogenases revealed an evenly distributed content of enzyme throughout the epithelium. As to the lactic- and -hydroxybutyric dehydrogenases, contents seem to be lower in the pupillary than in the peripheral zone.  相似文献   

8.
Adult and nymphal antennae of the cockroach, Leucophaea maderae, contain nine or more different morphological types of sense organs. There is no outwardly apparent sexual dimorphism in adult antennae. Nymphs are dificient in gross numbers of sensilla. Sense organs are classified morphologically by their similarity to known types of sensila and are assigned functions on this basis and preliminary electrophysiological data: Sensilla chaetica (A), thick-walled mechanoreceptive hairs in groups on the antennal base; S. chaetica (B), thick-walled setae which are tactile and probably chemoreceptive, occurring in the antennal base and flagellum; S. trichodea (A), thin-walled chemoreceptive hairs of the flagellum; S. trichodea (B), minute hairs on the scape and pedicel; S. basiconica, thin-walled chemoreceptive pegs, and S. coeloconica (?pit-pegs”?) of the flagellum; S. campaniformia and scolopidia, mechanoreceptors in the base and flagellum; plus Johnston's organ and/or connective chrodotonal organs in the pedicel. Calculations based on absolute counts of sensilla and their known innervation yield an estimate of about 3.3 × 104 sensilla and 105 cells per antenna.  相似文献   

9.
Abstract

Azadirachtin shortens the period length of the locomotor activity rhythm in the circadian rhythm of Leucophaea maderae and induces splitting of this rhythm in two components in about 40% of the animals. The phase relationship between the two components is 180°. Both shortening of period and splitting are more pronounced in animals possessing longer periods before the injection of azadirachtin.  相似文献   

10.
11.
The accessory medulla is the master circadian clock in the brain of the cockroach Leucophaea maderae and controls circadian locomotor activity. Previous studies have demonstrated that a variety of neuropeptides are prominent neuromediators in this brain area. Recently, members of the orcokinin family of crustacean neuropeptides have been identified in several insect species and shown to be widely distributed in the brain, including the accessory medulla. To investigate the possible involvement of orcokinins in circadian clock function, we have analyzed the distribution of orcokinin immunostaining in the accessory medulla of L. maderae in detail. The accessory medulla is densely innervated by approximately 30 orcokinin-immunoreactive neurons with cell bodies distributed in five of six established cell groups in the accessory medulla. Immunostaining is particularly prominent in three ventromedian neurons. These neurons have processes in a median layer of the medulla and in the internodular neuropil of the accessory medulla and send axonal fibers via the posterior optic commissure to their contralateral counterparts. Double-labeling experiments have revealed the colocalization of orcokinin immunostaining with immunoreactivity for pigment-dispersing hormone, FMRFamide, Mas-allatotropin, and γ-aminobutyric acid in two cell groups of the accessory medulla, but not in the ventromedian neurons or in the anterior and posterior optic commissure. Immunostaining in the ventromedian neurons suggests that orcokinin-related peptides play a role in the heterolateral transmission of photic input to the pacemaker and/or in the coupling of the bilateral pacemakers of the cockroach.This study was supported by the Deutsche Forschungsgemeinschaft, grant HO 950/9.  相似文献   

12.
The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recently beginning to be elucidated. As in flies and other insect species, pigment-dispersing hormone (PDH)-immunoreac- tive neurons of the accessory medulla of the cockroach are crucial elements of the circadian system. Lesions and transplantation experiments showed that the endogeneous circadian clock of the brain resides in neurons associated with the accessory medulla. The accessory medulla is organized into a nodular core receiving photic input, and into internodular and peripheral neuropil involved in efferent output and coupling input. Photic entrainment of the clock through compound eye photoreceptors appears to occur via parallel, indirect pathways through the medulla. Light-like phase shifts in circadian locomotor activity after injections of γ-aminobutyric acid (GABA)- or Mas-allatotropin into the vicinity of the accessory medulla suggest that both substances are involved in photic entrainment. Extraocular, cryptochrome-based photoreceptors appear to be present in the optic lobe, but their role in photic entrainment has not been examined. Pigment-dispersing hormone-immunoreactive neurons provide efferent output from the accessory medulla to several brain areas and to the peripheral visual system. Pigment-dispersing hormone-immunoreactive neurons, and additional heterolateral neurons are, furthermore, involved in bilateral coupling of the two pacemakers. The neuronal organization, as well as the prominent involvement of GABA and neuropeptides, shows striking similarities to the organization of the suprachiasmatic nucleus, the circadian clock of the mammalian brain.  相似文献   

13.
14.
Several lines of evidence suggest that pigment-dispersing hormone-immunoreactive neurons with ramifications in the accessory medulla are involved in the circadian system of insects. The present study provides a detailed analysis of the anatomical and neurochemical organization of the accessory medulla in the brain of the cockroach Leucophaea maderae. We show that the accessory medulla is compartmentalized into central dense nodular neuropil surrounded by a shell of coarse fibers. It is innervated by neurons immunoreactive to antisera against serotonin and the neuropeptides allatostatin 7, allatotropin, corazonin, gastrin/cholecystokinin, FMRFamide, leucokinin I, and pigment-dispersing hormone. Some of the immunostained neurons appear to be local neurons of the accessory medulla, whereas others connect this neuropil to various brain areas, including the lamina, the contralateral optic lobe, the posterior optic tubercles, and the superior protocerebrum. Double-label experiments show the colocalization of immunoreactivity against pigment-dispersing hormone with compounds related to FMRFamide, serotonin, and leucokinin I. The neuronal and neurochemical organization of the accessory medulla is consistent with the current hypothesis for a role of this brain area as a circadian pacemaking center in the insect brain.  相似文献   

15.
16.
Mating behavior of small populations of virgin males and females of the cockroach Leucophaea maderae were continuously monitored via time-lapse video recording in controlled laboratory conditions. The time of onset of copulation was found to be rhythmic in a light cycle of 12 h light alternated with 12 h of darkness, with the peak of mating behavior occurring near the light to dark transition. This rhythm persisted in constant dim red illumination and constant temperature. In constant conditions, the period of the rhythm was slightly less than 24 h, with a peak of copulation during the late subjective day. These data demonstrated that mating behavior is gated by a circadian clock. When males and females were taken from light cycles that were 12 h out of phase, a bimodal rhythm was observed with one peak in the males' late subjective day and a second peak of equal amplitude in the late subjective day of females. The results indicated that circadian systems in both males and females contribute to the circadian rhythm in copulation. Bilateral section of the optic tracts (OTX) of both males and females abolished the rhythm, but the rhythm persisted when OTX females were paired with intact males or when OTX males were paired with intact females. Furthermore, when OTX males or OTX females were paired with intact animals that were 12 h out of phase, a bimodal rhythm was still observed. These results suggested that the circadian pacemaker in the optic lobes of both male and female cockroaches participates in the control of mating, but that a pacemaker outside the optic lobes is also likely involved. Finally, it was shown that the female's olfactory response (measured by electroantennogram) to components of the male sex pheromone exhibited a circadian rhythm, but the data suggested the peripheral olfactory rhythm is not likely to be involved in the rhythm of mating behavior.  相似文献   

17.
Neurosecretory granules (NSG) containing hindgut-stimulating neurohormone (HSN) from Leucophaea maderae were isolated by densitygradient centrifugation of cockroach brain homogenates.High concentrations of HSN were consistently found in isolates containing large numbers of NSG. HSN was measured by bioassay and the NSG were identified by electron microscopy.  相似文献   

18.
The colon of L. maderae consists of a single columnar epithelium covered with a cuticle and of a musculo-connective sheath. The apical plasma membranes form a system of leaflets with numerous mitochondria inserted in association with microfilaments. Lateral plasma membranes are linked together by junctional complexes consisting of a zonula adherens and a long convoluted septate junction of the pleated type. In the basal region of the cell, numerous membrane infolds and scattered scalariform junctions with associated mitochondria are present. These cell specializations are typical of arthropod transporting organs, being distinctive features of ion and fluid transporting epithelia. The isolated colon exhibited a transepithelial electrical potential difference (PD) of about 100 mV, lumen side positive with respect to the haemolymph side. The PD was almost abolished by metabolic inhibitors, it was reduced by acetazolamide and SITS, and it was unaffected by ouabain. These effects suggest that HCO3- and Cl- are involved in the genesis of the PD, whereas Na+ is not directly responsible of the PD. Measurements of Na+ and Cl- fluxes across the colon wall confirm that Na+ moves following the PD across the tissue, while Cl- movement occurs against an electrochemical potential difference. The electrical profile of the epithelial cells is of the well type and it suggests that the primary or secondary active step for Cl- transport across the epithelium should be located at the mucosal border of the cell.  相似文献   

19.
20.
Bursicon activity first appears in the haemolymph of the cockroach, Leucophaea maderae, early in ecdysis as the old cuticle splits and separates over the thorax. Hormonal activity reaches high levels in the haemolymph before ecdysis is complete and remains so for about 1·5 hr, with a gradual decline and disappearance by 3 hr. The sensory mechanism controlling bursicon release is located in the thorax and appears to be stimulated as the ecdysial split widens for emergence of the thorax. If the abdomen is isolated before this time no tanning of abdominal cuticle occurs, while the isolated thorax proceeds to tan. Therefore the thoracic ganglia seem to be a site of release for bursicon. Release of the hormone from abdominal and head ganglia may also occur after neural stimulation from the thoracic system. Bursicon activity was found in all ganglia of the central nervous system and the corpora cardiaca-allata complex. Removal of the old cuticle prior to the start of ecdysial behaviour does not result in tanning of the new cuticle. However, if the old cuticle is removed after the insect begins to swallow air in preparation for ecdysis, then the new cuticle tans. Mechanical prevention of ecdysis and later removal of the old cuticle also does not result in tanning of the new cuticle. Therefore, shedding of the old cuticle only activates the release of bursicon in conjunction with other normal ecdysial events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号