首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels.  相似文献   

2.
Within the last five years, a number of specific growth factors have been localized in developing lesions of atherosclerosis. This localization of growth factors that is not observed in normal vessels, together with the pleotrophic activities of growth factors, have suggested a role for growth factors in atherosclerotic lesion progression. However, based on in vitro studies, many of the growth factors identified in lesions have overlapping target cells and are derived from the same cellular sources. What is the relative role of the specific growth factors identified? How is the their activity altered by the local conditions in the vessel wall? How do different risk factors for atherosclerosis alter the balance between growth factors and their natural regulators? Evidence for the involvement of specific growth factors in the progression of lesions of atherosclerosis is discussed, as well as the multiple levels at which the activities of these growth factors may be regulated by the vessel wall.  相似文献   

3.
Neovascularisation is critical in several malignant and inflammatory conditions, as well as in the course of eye disorders. During new vessel formation, endothelial cell functions, such as proliferation and sprouting are very important and are regulated by a variety of growth factors. The DNA damage response machinery as well as factors regulating histone modifications, such as histone deacetylases, regulate cell fate as well as gene expression. Recent evidence has pointed to potential interactions among BRCA1, H2AX and SIRT1 in these intracellular pathways and neovascularisation, which will be reviewed here.  相似文献   

4.
For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly throughout the disc, even though Decapentaplegic (Dpp), a key inducer of growth, forms a gradient. Here, we present a model for the control of growth in the wing imaginal disc, which can account for the uniform occurrence and termination of growth. A central feature of the model is that net growth is not only regulated by growth factors, but by mechanical forces as well. According to the model, growth factors like Dpp induce growth in the center of the disc, which subsequently causes a tangential stretching of surrounding peripheral regions. Above a certain threshold, this stretching stimulates growth in these peripheral regions. Since the stretching is not completely compensated for by the induced growth, the peripheral regions will compress the center of the disc, leading to an inhibition of growth in the center. The larger the disc, the stronger this compression becomes and hence the stronger the inhibiting effect. Growth ceases when the growth factors can no longer overcome this inhibition. With numerical simulations we show that the model indeed yields uniform growth. Furthermore, the model can also account for other experimental data on growth in the wing disc.  相似文献   

5.
The generation of neurons and glia in the developing nervous system is likely to be regulated by extrinsic factors, including growth factors and neurotransmitters. Evidence from in vivo and/or in vitro systems indicates that basic fibroblast growth factor, transforming growth factor (TGF)-α, insulin-like growth factor-1, and the monoamine neurotransmitters act to increase proliferation of neural precursors. Conversely, glutamate, γ-aminobutyric acid, and opioid peptides are likely to play a role in down-regulating proliferation in the developing nervous system. Several other factors, including the neuropeptides vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide, as well as the growth factors platelet-derived growth factor, ciliary neurotrophic factor, and members of the TGF-β family, have different effects on proliferation and differentiation depending on the system examined. Expression of many of these factors and their receptors in germinal regions of the central nervous system suggests that they can act directly on precursor populations to control their proliferation. Together, the findings discussed here indicate that proliferation and cell fate determination in the developing brain are regulated extrinsically by complex interactions between a relatively large number of growth factors and neurotransmitters. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 287–306, 1998
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    The steady-state levels of calcyclin mRNA are regulated by growth factors. Using deletion mutants of the 5'-flanking region and a linked reporter (the bacterial chloroamphenicol transferase gene), we have investigated the elements of the calcyclin gene's promoter that respond to growth factors. By a transient expression assay after transfection in BALB/c/3T3 cells, we have been able to show that the serum-inducible sequences are contained in a 164-base pair fragment just upstream of the cap site. This fragment also contains an enhancer, and responds to platelet-derived growth factor as well as to serum. The sequences from -1371 to -1194 upstream of the cap site contain an element which is negatively regulated by epidermal growth factor. These findings have been confirmed in hamster cell lines in which the deletion mutants of the calcyclin promoter controlled the expression of the cDNA for human thymidine kinase. These results indicate that, like in other growth-regulated genes the activity of the calcyclin promoter is modulated by both positive and negative elements. Even more intriguing, though, is the finding that some of these negative elements may be influenced by growth factors in the environment.  相似文献   

    7.
    8.
    9.
    Neurotrophic factors and axonal growth   总被引:13,自引:0,他引:13  
    Neuronal morphological differentiation is regulated by numerous polypeptide growth factors (neurotrophic factors). Recently, significant progress has been achieved in clarifying the roles of neurotrophins as well as glial cell line-derived neurotrophic factor family members in peripheral axon elongation during development. Additionally, advances have been made in defining the signal transduction mechanisms employed by these factors in mediating axon morphological responses. Several studies addressed the role of neurotrophic factors in regenerative axon growth and suggest that signaling mechanisms in addition to those triggered by receptor tyrosine kinases may be required for successful peripheral nervous system regeneration. Finally, recent investigations demonstrate that neurotrophic factors can enhance axon growth after spinal cord injuries.  相似文献   

    10.
    Extracellular matrix receptors in branched organs   总被引:1,自引:0,他引:1  
      相似文献   

    11.
    12.
    PIFs: Systems Integrators in Plant Development   总被引:1,自引:0,他引:1  
      相似文献   

    13.
    14.
    Since methods to disperse and culture hepatocytes were developed 15 years ago, numerous investigations have shown that primary cultures of mature hepatocytes retain most liver functions and respond as well to various hormones as those in vivo. Thus they are the most suitable system in vitro for studies on the liver. Moreover, recently it was found that differentiated hepatocytes in culture can grow under certain conditions and that this growth is regulated not only by several hormones, such as insulin, epidermal growth factor and serum growth factor, but also by a cell membrane factor and proteins in the environmental matrix through cell contact. This article describes the biochemical characterization of regulatory factors for hepatocyte growth and functions and their reciprocal expression. The mechanisms of liver regeneration, differentiation and carcinogenesis and the importance of the tissue architecture for these events are discussed mainly on the basis of our findings.  相似文献   

    15.
    In muscle cells, as in a variety of cell types, proliferation and differentiation are mutually exclusive events controlled by a balance of opposing cellular signals. Members of the MyoD family of muscle-specific helix-loop-helix proteins which, in collaboration with ubiquitous factors, activate muscle differentiation and inhibit cell proliferation function at the nexus of the cellular circuits that control proliferation and differentiation of muscle cells. The activities of these myogenic regulators are negatively regulated by peptide growth factors and activated oncogenes whose products transmit growth signals from the membrane to the nucleus. Recent studies have revealed multiple mechanisms through which intracellular growth factor signals may interfere with the functions of the myogenic regulators. When expressed at high levels, members of the MyoD family can override mitogenic signals and can cause growth arrest independent of their effects on differentiation. The ability of these myogenic regulators to inhibit proliferation of normal as well as transformed cells from multiple lineages suggests that they interact with conserved components of the cellular machinery involved in cell cycle progression and that similar types of regulatory factors participate in differentiation and cell cycle control in diverse cell types.  相似文献   

    16.
    Transforming growth factors and control of neoplastic cell growth   总被引:18,自引:0,他引:18  
    Transforming growth factors (TGFs) are peptides that affect the growth and phenotype of cultured cells and bring about in nonmalignant fibroblastic cells phenotypic properties that resemble those of malignant cells. Two types of TGFs have been well characterized. One of these, TGF alpha, is related to epidermal growth factor (EGF) and binds to the EGF receptor, whereas the other, TGF beta, is not structurally or functionally related to TGF alpha or EGF and mediates its effects via distinct receptors. TGF beta is produced by a variety of normal and malignant cells. Depending upon the assay system employed, TGF beta has both growth-inhibitory and growth-stimulating properties. Many of the mitogenic effects of TGF beta are probably an indirect result of the activation of certain growth factor genes in the target cell. The ubiquitous nature of the TGF beta receptor and the production of TGF beta in a latent form by most cultured cells suggests that the differing cellular responses to TGF beta are regulated either by events involved in the activation of the factor or by postreceptor mechanisms. The combined effects of TGF beta with other growth factors or inhibitors evidently play a central role in the control of normal and malignant cellular growth as well as in cell differentiation and morphogenesis. Since transforming growth factor as a concept has partially proven misleading and insufficient, there is a need to find a new nomenclature for these regulators of cellular growth and differentiation.  相似文献   

    17.
    Matrix metalloproteinases and their expression in mammary gland   总被引:5,自引:1,他引:4  
    The matrix metalloproteinases (MMPs) are a family of zine-dependent endopeptidases that play a key role in both normal and pathological processes involving tissue remodeling events.The expression of these proteolytic enzymes is highly regulated by a balance between extracellular matrix (ECM) deposition and its degradation,and is controlled by growth factors,cytokines,hormones,as well as interactions with the ECM macromolecules.Furthermore,the activity of the MMPs is regulated by their natural endogenous inhibitors,which are members of the tissue inhibitor of metalloproteinases (TIMP) family.In the normal mammary gland,MMPs are expressed during ductal development,lobulo-alveolar development in pregnancy and involution after lactation.Under pathological conditions,such as tumorigenesis,the dysregulated expression of MMPs play a role in tumor initiation,progression and malignant conversion as well as facilitating invasion and metastasis of malignant cells through degradation of the ECM and basement membranes.  相似文献   

    18.
    19.
    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号