首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of altered vascular smooth muscle function in the etiology of essential hypertension has been extensively studied by a number of investigators. The results obtained from in vivo studies do not always correlate with results from in vitro studies and it is not always apparent whether the results reflect differences related to hypertension or to the genetic background of the animal model. In vitro and perfused vascular bed studies in our laboratory have utilized the spontaneously hypertensive rat (SHR), the normotensive Wistar Kyoto rat (WKY), genetically related crossbred rats (F1, F2, and BC1), and also Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The role of altered smooth muscle function in relation to the development of the elevated blood pressure (BP) of the SHR or DS rat was studied and emphasis was placed on determining the role of altered neuronal uptake1 (U1) in hypertensives in masking elevated postsynaptic sensitivity to noradrenaline. In addition, the relationship between postsynaptic sensitivity to cations and BP was assessed. Such studies have indicated that alterations in postsynaptic sensitivity, U1 activity, and sensitivity to cations are not entirely consistent with the etiology of hypertension in the SHR and DS rat but may simply reflect genetic strain differences between the hypertensive and normotensive animals.  相似文献   

2.
Aldosterone plays a crucial role in controlling mineral balance in our body. The mechanism of aldosterone has been reported to elevate renal Na+ reabsorption by stimulating expression of epithelial Na+ channel (ENaC) and also activate an ENaC-regulating protein kinase, serum and glucocorticoid-regulated kinase 1 (SGK1). However, it is unknown whether aldosterone shows its stimulatory action on ENaC and SGK1 under an abnormal, salt-sensitive hypertensive condition. To clarify this point, we studied how aldosterone regulates expression of ENaC and SGK1 in Dahl salt-sensitive (DS) rat that shows hypertension with high salt diet. RNA and protein were extracted from the kidney 6 h after application of aldosterone (1.5 mg/kg body weight) subcutaneously injected into adrenalectomized DS and Dahl salt-resistant (DR) rats. Aldosterone decreased mRNA expression of beta- and gamma-ENaC in DS rat unlike DR rat, while aldosterone increased alpha-ENaC mRNA expression in DS rat similar to DR rat. Further, we found that aldosterone elevated SGK1 expression in DR rat, but not in DS rat. These observations indicate that ENaC and SGK1 are abnormally regulated by aldosterone in salt-sensitive hypertensive rats, suggesting that disturbance of the aldosterone regulation would be one of factors causing salt-sensitive hypertension.  相似文献   

3.
4.
Oxidative stress is involved in the tolerance to ischemia-reperfusion (I/R) injury. Because angiotensin II type 1 receptor blockers (ARBs) inhibit oxidative stress, there is concern that ARBs abolish the tolerance to I/R injury. Dahl salt-sensitive (DS) hypertensive and salt-resistant (DR) normotensive rats received an antioxidant, 2-mercaptopropionylglycine (MPG), or an ARB, losartan, for 7 days. Losartan and MPG significantly inhibited oxidative stress as determined by tissue malondialdehyde + 4-hydroxynoneal and increased expression of inducible nitric oxide synthase (iNOS) in the DS rat heart. However, losartan but not MPG activated endothelial nitric oxide synthase (eNOS) as assessed by phosphorylation of eNOS on Ser1177. Infarct size after 30-min left coronary artery occlusion followed by 2-h reperfusion was comparable between DS and DR rat hearts. Although MPG and losartan had no effect on infarct size in the DR rat heart, MPG but not losartan significantly increased infarct size in the DS rat heart. A selective iNOS inhibitor, 1400W, increased infarct size in the DS rat heart, but it had no effect on infarct size in the losartan-treated DS rat heart. However, a nonselective NOS inhibitor, Nomega-nitro-l-arginine methyl ester, increased infarct size in the losartan-treated DS rat heart. These results suggest that losartan preserves the tolerance to I/R injury by activating eNOS despite elimination of redox-sensitive upregulation of iNOS and iNOS-dependent cardioprotection in the DS rat heart.  相似文献   

5.
This in vitro study evaluated the basal 42K turnover and response to norepinephrine (NE) in the thoracic aorta removed from Dahl salt-sensitive (S) and salt-resistant (R) rats. Five-week-old S and R rats were placed on either a high-salt (HS) or low-salt (LS) diet. After 5 weeks of the diet, systolic blood pressure, aortic weight/length ratio, and the cellular pool of K+ were elevated in the S-HS group only. In contrast, the steady state turnover of 42K, the NE ED50, and the response to a supramaximal dose of NE were the same in both groups of salt-sensitive and salt-resistant rats. These results suggest that, despite the presence of a greatly elevated systolic blood pressure and evidence of aortic hypertrophy, the intrinsic electrolyte metabolism of the vascular smooth muscle in the Dahl hypertensive rat is the same as that of the Dahl normotensive rat.  相似文献   

6.
Li Q  He RR 《生理学报》2001,53(5):355-360
在麻醉Dahl盐敏感型(DS)高血压大鼠和Dahl盐抵抗型(DR)正常血压大鼠,研究了静注胍丁胺(agmatine,AGM)对血流动力学的影响.结果显示(1)静注AGM(1,10,20mg/kg)可剂量依赖性地降低DS和DR大鼠的HR,MAP,LVP,±LVdp/dtmax,CI和TPRI.在DS高血压大鼠,MAP,LVP,±LVdp/dtmax和TPRI较DR正常血压大鼠下降幅度要大;而HR和CI在两种大鼠下降幅度无差异.需特别提出的是,DS高血压大鼠在静注高剂量AGM(20mg/kg)后,各项血流动力学指标出现先降低而后升高的现象,这一结果在DR正常血压大鼠并未出现.(2)预先静注咪唑啉受体(IR)和α2-肾上腺素能受体阻断剂(α2-AR)idazoxan(2.5mg/kg)可部分阻抑AGM的血流动力学效应.(3)预先静注α2-肾上腺素能受体阻断剂yohimbine(4mg/kg)同样可部分阻抑AGM的效应.(4)预先静注咪唑啉受体(I1)和α2-肾上腺素能受体阻断剂efaroxan(2.5mg/kg)则完全阻断AGM的血流动力学效应.以上结果表明,AGM可显著降低麻醉DR和DS大鼠的HR,MAP,LVP,±LVdp/dtmax,CI和TPRI;此效应似主要由I1-IR所介导,并有I2-IR和α2-AR参与.  相似文献   

7.
Although it is well established that the renal endothelin (ET-1) system plays an important role in regulating sodium excretion and blood pressure through activation of renal medullary ET(B) receptors, the role of this system in Dahl salt-sensitive (DS) hypertension is unclear. The purpose of this study was to determine whether the DS rat has abnormalities in the renal medullary endothelin system when maintained on a high sodium intake. The data indicate that Dahl salt-resistant rats (DR) on a high-salt diet had a six-fold higher urinary endothelin excretion than in the DR rats with low Na(+) intake (17.8 ± 4 pg/day vs. 112 ± 44 pg/day). In sharp contrast, urinary endothelin levels increased only twofold in DS rats in response to a high Na(+) intake (13 ± 2 pg/day vs. 29.8 ± 5.5 pg/day). Medullary endothelin concentration in DS rats on a high-Na(+) diet was also significantly lower than DR rats on a high-Na(+) diet (31 ± 2.8 pg/mg vs. 70.9 ± 5 pg/mg). Furthermore, DS rats had a significant reduction in medullary ET(B) receptor expression compared with DR rats while on a high-Na(+) diet. Finally, chronic infusion of ET-1 directly into the renal medulla blunted Dahl salt-sensitive hypertension. These data indicate that a decrease in medullary production of ET-1 in the DS rat could play an important role in the development of salt-sensitive hypertension observed in the DS rat.  相似文献   

8.
Corticosteroids have been shown to play a role in cardiac remodeling, with the possibility of a direct effect of overexpression of 11beta-hydroxysteroid dehydrogenase (11HSD) isoform 2 at the level of the cardiomyocytes. The aim of this study was to examine cardiac steroid metabolism in hypertensive rats with hearts that are hypertrophied and fibrotic and have structural alterations in the coronary circulation. To assess possible alterations of cardiac steroid metabolism the expression and activity of both isoforms of 11beta-hydroxysteroid dehydrogenase (11HSD) were studied in spontaneously hypertensive rats (SHR), their normotensive controls Wistar-Kyoto (WKY), and in Dahl salt-sensitive (DS) and salt-resistant rats (DR) kept on a low- or high-salt diet. Using real-time quantitative RT-PCR and enzyme activity assay we found strain-dependent differences in cardiac metabolism of glucocorticoids. In Dahl rats expression of 11HSD1 and 11HSD2 mRNA was lower in DS than in DR rats and was not influenced by dietary salt intake; 11HSD1 mRNA was expressed at higher level than 11HSD2 mRNA. NADP(+)-dependent cardiac 11HSD activity showed similar distribution as 11HSD1 mRNA-lower activity in DS than in DR rats and no effect of salt intake. In SHR and WKY strains 11HSD2 mRNA expression was significantly higher in WKY than in SHR but no differences were observed in 11HSD1 mRNA abundance and NADP(+)-dependent 11HSD activity. These results show that the heart is able to metabolize glucocorticoids and that this metabolism is strain-dependent but do not support the notion of association between cardiac hypertrophy and changes of 11HSD1 and 11HSD2 expression.  相似文献   

9.
The spontaneous output of prostaglandin (PG) I2 from the perfused mesenteric arterial bed in vitro was significantly higher in hypertensive rats than in normotensive rats. Sympathetic nerve stimulation (at 10Hz) of the mesenteric arterial bed from normotensive rats caused a rapid and short-lived (< 4 min) two-fold increase in PGI2 output and a smaller increase in PGE2 output. Sympathetic nerve stimulation (at 10Hz) of the mesenteric arterial bed from hypertensive rats failed to increase PGI2 and PGE2 output. It is not possible to conclude whether this lack of response is a cause or a result of hypertension. Surprisingly, norepinephrine administration stimulated PGI2 and PGE2 release from the mesenteric arterial bed of both normotensive and hypertensive rats. Obviously, differences exist in the responsiveness of rat mesenteric arteries to endogenous and exogenous norepinephrine concerning PG release between the normotensive and hypertensive states.  相似文献   

10.
Epithelial sodium channel (ENaC) plays a crucial role in controlling sodium reabsorption in the kidney keeping the normal blood pressure. We previously reported that the expression of ENaC mRNA in the kidney of Dahl salt-sensitive (DS) rats was abnormally regulated by aldosterone, however it is unknown if dietary sodium affects the expression of ENaC and serum and glucocorticoid-regulated kinase 1 (SGK1), which plays an important role in ENaC activation, in DS rats. In the present study, we investigated whether dietary sodium abnormally affects the expression of ENaC and SGK1 mRNA in DS rats. DS and Dahl salt-resistant (DR) rats (8 weeks old) were divided into three different groups, respectively: (1) low sodium diet (0.005% NaCl), (2) normal sodium diet (0.3% NaCl), and (3) high sodium diet (8% NaCl). The high sodium diet for 4 weeks in DS rats elevated the systolic blood pressure, but did not in any other groups. The expression of alpha-ENaC mRNA in DS rats was abnormally increased by high sodium diet in contrast to DR rats, while it was normally increased by low sodium diet in DS rats similar to DR rats. The expression of beta- and gamma-ENaC mRNA in DS rats was also abnormally increased by high sodium diet unlike DR rats. The expression of SGK1 mRNA was elevated by high sodium diet in DS rats, but it was decreased in DR rats. These observations indicate that the expression of ENaC and SGK1 mRNA is abnormally regulated by dietary sodium in salt-sensitively hypertensive rats, and that this abnormal expression would be one of the factors causing salt-sensitive hypertension.  相似文献   

11.
Systolic blood pressure responses to enalapril maleate (MK 421, a new angiotensin converting enzyme inhibitor (CEI] and hydrochlorothiazide (HTZ) were studied in conscious Dahl salt-sensitive (DS) and salt-resistant (DR) rats maintained on a high salt (8.0% NaCl) and a normal salt (0.4% NaCl) diet. The DS rats were severely hypertensive after 3 weeks on the high salt diet whereas the systolic blood pressure (SBP) of the DR rats were normotensive. Oral treatment with enalapril (15-100 mg X kg-1 X day-1) and HTZ (60-400 mg X kg-1 X day-1) caused a significant reduction of SBP in the DS rats with the high salt diet (P less than 0.001); however, this was not observed until after 4 weeks of treatment when the dosage was 30 and 150 mg X kg-1 X day-1, respectively. Furthermore, enalapril therapy alone significantly reduced the SBP of all groups of rats regardless of diet or Dahl strain (P less than 0.001), but this was not observed until the end of the 7th week of therapy in DR rats on 8.0% NaCl and the end of the 3rd week of therapy for DR and DS rats on 0.4% NaCl. These results suggest that enalapril may lower SBP by mechanisms other than those related to an action as a CEI.  相似文献   

12.
This study examines vascular reactivity to alpha-adrenoceptor agonists in mineralocorticoid (deoxycorticosterone acetate (DOCA-salt) hypertensive and normotensive rats. The rats were anesthetized and the mesenteric artery was excised and cut helically into strips that were mounted in a muscle bath for the measurement of isometric force development. Addition of norepinephrine, epinephrine, phenylephrine, methoxamine, or clonidine to the bath caused contractions in all arteries. Arteries from hypertensive rats were more sensitive (lower ED50 values) to each of the agonists than arteries from normotensive rats. alpha-Adrenoceptor affinity for phentolamine (Schild analysis; norepinephrine as the agonist) in hypertensive arteries was not significantly different from that in normotensive arteries. Maximal force generation to clonidine was greater in hypertensive arteries than in normotensive arteries. These results demonstrate an augmented vascular sensitivity to several alpha-adrenoceptor agonists in DOCA hypertensive rats. This change in sensitivity is independent of a change in affinity for the adrenoceptor antagonist, phentolamine. It may be that a change in receptor number or an alteration in a post-receptor activation event accounts for this enhanced adrenoceptor responsiveness in mineralocorticoid hypertension.  相似文献   

13.
The effect of captopril treatment on neurally induced vasoconstrictor and vasodilator responses was examined in the isolated mesenteric arterial bed from normotensive and one-kidney, one clip hypertensive (1K1C) rats. In isolated mesenteric beds, electrical field stimulation (EFS) of perivascular nerves at basal tone induced a frequency-dependent increase in perfusion pressure that was greater in preparations from hypertensive rats compared with those from normotensive rats. Captopril treatment was associated with a decrease in vasoconstrictor responses in the hypertensive group compared with its non-treated control. Responses to norepinephrine (320 ng) were greater in hypertensive than normotensive groups; captopril reduced this response only in the hypertensive group. In preconstricted mesenteric arteries perfused with solutions containing guanethidine (5 microM) and atropine (1 microM), EFS elicited a frequency-dependent decrease in perfusion pressure that was abolished by tetrodotoxin (1 microM). Vasodilator responses to EFS were not affected by captopril treatment, although they were smaller in the hypertensive group. Acetylcholine (10 ng) induced similar decreases in perfusion pressure of normotensive and 1K1C groups; captopril did not influence these responses. These results indicate that captopril treatment does not affect the reduced neurogenic vasodilation but normalizes the augmented sympathetic-mediated vasoconstrictor responses of mesenteric resistance vessels of chronic 1K1C hypertensive rats.  相似文献   

14.
In previous experiments we have demonstrated that the renal nerves play a significant role in all genetic and (or) induced models of hypertension that we have studied. The current experiments extended this research by investigating the contribution of the renal nerves to hypertension in the Dahl NaCl-sensitive rat. This was investigated by assessing the effect of bilateral phenol renal denervation carried out prior to initiation of a high NaCl (8% NaCl) diet. In two separate studies, renal denervation did not affect systolic blood pressure in either Dahl NaCl-sensitive rats or their normotensive counterparts, Dahl NaCl-resistant rats. Further, denervation did not increase absolute urinary sodium excretion, percent urinary sodium excretion, urinary volume output, or food or water intake; nor did it differentially alter creatinine clearance or body weight. Denervation was verified at the termination of each study by a greater than 80% depletion of renal noradrenaline stores. These results indicate that the renal nerves do not provide a major contribution to hypertension in the Dahl NaCl-sensitive rat.  相似文献   

15.
We have investigated the antioxidant effect of adrenomedullin (AM) on endothelial function in the Dahl salt-sensitive (DS) rat hypertension model. Dahl salt-resistant (DR) and DS rats were fed an 8% NaCl diet. In addition, the DS rats were subcutaneously infused with either saline or recombinant human AM for 4 weeks. Although systolic blood pressures measured weekly in AM- and saline-infused rats did not significantly differ, aortic O2*- levels were significantly (P<0.01) higher in the latter. Likewise, both endothelial nitric oxide synthase (eNOS) mRNA and protein were significantly higher in saline-infused DS rats. Infusion of AM reduced both O2*- and eNOS expression to levels comparable to those seen in DR rats. AM infusion also upregulated the gene expression of guanosine-5'-triphosphate cyclohydrolase I and downregulated the expression of p22(phox), suggesting that AM increased the NOS coupling and bioavailability of NO. AM possesses significant antioxidant properties that improve endothelial function.  相似文献   

16.
Four-week-old inbred Dahl salt-sensitive (DS/JR) and Dahl salt-resistant (DR/JR) rats were placed on an 8% salt diet with or without a supplemental 2.5% tryptophan (Trp). Blood pressures were monitored for the next 5 weeks. Urine volumes and ion concentrations were measured during the 6th week. Blood pressures of DS/JR rats on control diets elevated rapidly and markedly, whereas pressures of DS/JR rats on the Trp-supplemented diet were not significantly elevated over those of DR/JR rats. Pressures of DR/JR rats were unaffected by Trp supplementation. Urinary sodium was significantly greater in DR/JR rats compared with DS/JR rats and was unaffected by Trp supplementation. This suggests that the antihypertensive effect of Trp was not at the level of the kidney. We conclude that dietary Trp blocks the development of hypertension in DS/JR rats maintained on a high salt diet.  相似文献   

17.
The present study investigates the influence of a chronic high Na+ diet (8% Na+) on the expression of the angiotensin type 1A (AT1A) receptor gene in the lamina terminalis and paraventricular nucleus of the hypothalamus (PVH) in normotensive Wistar (W) rats, as well as in Dahl salt-resistant (DR) and Dahl salt-sensitive (DS) rats. Three weeks of 8% Na+ diet led to a higher blood pressure in DS rats compared to DR and W rats. Moreover, the high Na+ diet was correlated with a decreased expression of AT1A receptor mRNA in the median preoptic nucleus (MnPO) and in the PVH of DS rats, compared to DR and W rats. Contrastingly, the AT1A receptor mRNA expression was not altered by the high Na+ diet in the forebrain circumventricular organs of all the rat strains. Interestingly, a furosemide-induced Na+ depletion was correlated with an increased expression of AT1A receptor mRNA in the PVH, MnPO and SFO of both the DS and DR rats. It is concluded that chronic high Na+ diet did differently regulate the expression of AT1A receptor mRNA in two hypothalamic integrative centers for hydromineral and cardiovascular balance (the PVH and MnPO) in DS rats, compared to DR and W rats. However, the AT1A receptor mRNA expression was similarly regulated in DS and DR rats in response to an acute Na+ depletion, suggesting a distinct high Na+ -induced regulation of the AT1A receptor gene in the PVH and MnPO of DS rats.  相似文献   

18.
The sympathetic nervous system and renin-angiotensin system are both thought to contribute to the development and maintenance of hypertension in experimental models such as the spontaneously hypertensive rat (SHR). We demonstrated that periarterial nerve stimulation (NS) increased the perfusion pressure (PP) and neuropeptide Y (NPY) overflow from perfused mesenteric arterial beds of SHRs at 4-6, 10-12, and 18-20 wk of age, which correspond to prehypertensive, developing hypertensive, and maintained hypertensive stages, respectively, in the SHR. NS also increased PP and NPY overflow from mesenteric beds of Wistar-Kyoto (WKY) normotensive rats. NS-induced increases in PP and NPY were greater in vessels obtained from SHRs of all three ages compared with WKY rats. ANG II produced a greater increase in PP in preparations taken from SHRs than WKY rats. ANG II also resulted in a greater increase in basal NPY overflow from 10- to 12-wk-old and 18- to 20-wk-old SHRs than age-matched WKY rats. ANG II enhanced the NS-induced overflow of NPY from SHR preparations more than WKY controls at all ages studied. The enhancement of NS-induced NPY overflow by ANG II was blocked by the AT1 receptor antagonist EMD-66684 and the angiotensin type 2 receptor antagonist PD-123319. In contrast, ANG II greatly enhanced norepinephrine overflow in the presence of PD-123319. Both captopril and EMD-66684 decreased neurotransmitter overflow from SHR mesenteric beds; therefore, we conclude that an endogenous renin-angiotensin system is active in this preparation. It is concluded that the ANG II-induced enhancement of sympathetic nerve stimulation may contribute to the development and maintenance of hypertension in the SHR.  相似文献   

19.
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.  相似文献   

20.
It has been shown that endothelium-derived nitric oxide (NO) plays an important role in regulation of vascular tone in the prenatal and early postnatal period. The aim of this paper was to determine the reactivity and accompanying structural changes in thoracic aorta from 4-week-old spontaneously hypertensive rats (SHR) and rats with hereditary hypertriglyceridemia (hHTG) in comparison with age-matched normotensive controls. For functional studies thoracic aorta was excised, cut into rings and mounted in organ baths for measurement of isometric contractile force. For morphological studies cardiovascular system of rats was perfused with glutaraldehyde fixative (at 100 mm Hg) via cannula placed in the left ventricle. Morphological changes of thoracic aorta were measured using light microscopy. Systolic blood pressure (SBP) in SHR (98+/-1 mm Hg) did not significantly differ from that of age-matched control rats (95+/-4 mm Hg), but was slightly increased in hHTG rats (110+/-2 mm Hg, P<0.05). Heart weight/body weight ratio was higher in SHR and hHTG rats than in control group indicating the hypertrophy of the heart in both models of hypertension. Endothelium-dependent relaxation of aorta induced by acetylcholine was preserved in all groups and did not differ from that in control normotensive rats. The maximal isometric contraction of thoracic aorta to noradrenaline (NA) was reduced in hypertensive groups and the concentration-response curves to NA were shifted to the right indicating increased sensitivity of smooth muscle to NA. The values of wall thickness and cross sectional area as well as inner diameter of thoracic aorta in SHR and hHTG rats were significantly decreased in comparison to control groups. Endothelial dysfunction seems to be absent in all young rats before development of hypertension. In conclusion, our observations indicate that in early stage of experimental hypertension NO-dependent relaxation is preserved so that putative impairment of this function provides no significant pathogenic contribution to the onset of hypertension in these two experimental models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号