首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant hepatitis B surface antigen was synthesized by cloning hepatitis B virus ‘S’ gene under the control of glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. Hepatitis B surface antigen was constitutively expressed, was stable and exhibited ∼20–22 nm particle formation. Stability and absence of toxicity to the host with the expression vector indicates the expression system can be applied for large-scale production.  相似文献   

2.
To develop an efficient way to produce S-adenosylmethionine (SAM), methionine adenosyltransferase gene (mat) from Streptomyces spectabilis and Vitreoscilla hemoglobin gene (vgb) were coexpressed intracellularly in Pichia pastoris, both under control of methanol-inducible promoter. Expression of mat in P. pastoris resulted in about 27 times higher specific activity of methionine adenosyltransferase (SMAT) and about 19 times higher SAM production relative to their respective control, suggesting that overexpression of mat could be used as an efficient method for constructing SAM-accumulating strain. Under induction concentration of 0.8 and 2.4% methanol, coexpression of vgb improved, though to different extent, cell growth, SAM production, and respiratory rate. However, the effects of VHb on SAM content (specific yield of SAM production) and SMAT seemed to be methanol concentration-dependent. When cells were induced with 0.8% methanol, no significant effects of VHb expression on SAM content and specific SMAT could be detected. When the cells were induced with 2.4% methanol, vgb expression increased SAM content significantly and depressed SMAT remarkably. We suggested that under our experimental scheme, the presence of VHb might improve ATP synthesis rate and thus improve cell growth and SAM production in the recombinant P. pastoris.  相似文献   

3.
Pichia pastoris is an efficient host for the expression and secretion of heterologous proteins and the most important feature of P. pastoris is the existence of a strong and tightly regulated promoter from the alcohol oxidase I (AOX1) gene. The AOX1 promoter (pAOX1) has been used to express foreign genes and to produce a variety of recombinant proteins in P. pastoris. However, some efforts have been made to develop new alternative promoters to pAOX1 to avoid the use of methanol. The glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) has been used for constitutive expression of many heterologous proteins. The pGAP-based expression system is more suitable for large-scale production because the hazard and cost associated with the storage and delivery of large volume of methanol are eliminated. Some important developments and features of this expression system will be summarized in this review. Supported by the National High-tech R&D Program (863 program) (No.2007AA021307).  相似文献   

4.
Yield of S-adenosylmethionine was improved significantly in recombinant Pichia pastoris by controlling NH4 + concentration. The highest production rate was 0.248 g/L h when NH4 + concentration was 450 mmol/L and no repression of cell growth was observed. Within very short induction time (47 h), 11.63 g/L SAM was obtained in a 3.7 L bioreactor.  相似文献   

5.
Hänsch R  Kurz T  Schulze J  Mendel RR  Cerff R  Hehl R 《Planta》2003,218(1):79-86
The maize (Zea mays L.) glyceraldehyde-3-phosphate dehydrogenase gene 4 (GapC4) promoter confers anaerobic gene expression in tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and Arabidopsis thaliana (L.) Heynh. Here we have investigated its expression in hybrid poplar (Populus tremula × P. alba). Our results show that the promoter is not expressed in leaves and stems under normoxic conditions while anaerobiosis induces reporter gene expression in leaves up to a level observed for the STLS-1 promoter from potato that is shown to confer leaf-specific gene expression in transgenic poplar. Anaerobic induction is cell autonomous and requires a CO2 atmosphere and light. As in tobacco, the GapC4 promoter in poplar is wound inducible. The induction by CO2 and light may reflect a natural situation because flooding, a natural cause of anaerobiosis, is often accompanied by high CO2 concentrations in the floodwater. Our results show that the GapC4 promoter is suitable as an anaerobic reporter and as an inducible gene expression system in poplar.Abbreviations CaMV cauliflower mosaic virus - GapC4 glyceraldehyde-3-phosphate dehydrogenase gene 4 - GUS -glucuronidase - 4-MU methylumbelliferone - STLS-1 stem- and leaf-specific promoter 1  相似文献   

6.
Pichia pastoris was used to express a recombinant scFv antibody against methamidophos derived from a recombinant phage-display library. The specific scFv gene was amplified from a positive clone and then subcloned into the expression vector pPICZα C. The resulting plasmid, pPICZα C–scFv, was linearized and transformed into P. pastoris (X-33). A transformant named X-33-Pp-Met-28D4, which showed strong expression of antibodies, was isolated, and the culture conditions were optimized. Under optimal conditions, P. pastoris cultures yielded much higher levels of scFv product than the Escherichia coli expression system. Immunochemical characterization of the scFv antibodies produced in P. pastoris indicated that the affinity and specificity of scFv against methamidophos are comparable to those of scFv antibodies produced in E. coli. Recoveries of methamidophos-fortified samples demonstrated that the P. pastoris-derived scFv antibodies can be used to determine the content of methamidophos residue in environmental and agricultural samples. For our purposes, expression in Pichia proved to be an efficient and economical method for the large-scale production of functional scFv antibodies against methamidophos for downstream applications.  相似文献   

7.
A high-density cell culture method to produce human angiostatin has been successfully established by constitutive expression of the protein in Pichia pastoris. The fermentation was carried out in a 20 l bioreactor with a 10 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol−0.8% PTM4 to the growing culture for 60 h at 30°C. Dissolved oxygen level was maintained at 25–30% and pH was controlled at 5 by the addition of 7 M NH4OH. Angiostatin was constitutively expressed during the fermentation by linking its expression to the P. pastoris constitutive GAP promoter (pGAP). But after 36 h of fermentation, the peak biomass growth was 305 as measured by absorption of 600 nm, while the peak angiostatin expression was 176 mg/l. Similar to the product expressed from inducible system [24], angiostatin produced from constitutive system also inhibited the angiogenesis on the CAM and suppressed the growth of B16 melanoma in C57BL/6J mouse. The above results suggest that GAP promoter is more efficient than AOX1 promoter for the expression of angiostatin in P. pastoris by shake flask culture or high-density cell fermentation and is likely to be an alternative to AOX1 promoter in large-scale expression of angiostatin and other heterologous proteins. Supported by the Natural Science Foundation of China (39670013) and “225” Science and Technology Program of Guangzhou Municipal Government of China (99-Z-004-001).  相似文献   

8.
Although arsenic is an infamous carcinogen, it has been effectively used to treat acute promyelocytic leukemia, and can induce cell cycle arrest or apoptosis in human solid tumors. Previously, we had demonstrated that opposing effects of ERK1/2 and JNK on p21 expression in response to arsenic trioxide (As2O3) are mediated through the Sp1 responsive elements of the p21 promoter in A431 cells. Presently, we demonstrate that Sp1, and c-Jun functionally cooperate to activate p21 promoter expression through Sp1 binding sites (−84/−64) by using DNA affinity binding, chromatin immunoprecipitation, and promoter assays. Surprisingly, As2O3-induced c-Jun(Ser63/73) phosphorylation can recruit TGIF/HDAC1 to the Sp1 binding sites and then suppress p21 promoter activation. We suggest that, after As2O3 treatment, the N-terminal domain of c-Jun phosphorylation by JNK recruits TGIF/HDAC1 to the Sp1 sites and then represses p21 expression. That is, TGIF is involved in As2O3-inhibited p21 expression, and then blocks the cell cycle arrest.  相似文献   

9.
To utilize Pichia pastoris to produce glutathione, an intracellular expression vector harboring two genes (gsh1 and gsh2) from Saccharomyces cerevisiae encoding enzymes involved in glutathione synthesis and regulated by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter was transformed into P. pastoris GS115. Through Zeocin resistance and expression screening, a transformant that had higher glutathione yield (217 mg/L) in flask culture than the host strain was obtained. In fed-batch culture process, this recombinant strain displayed high activity for converting precursor amino acids into glutathione. The glutathione yield and biomass achieved 4.15 g/L and 98.15 g (dry cell weight, DCW)/L, respectively, after 50 h fermentation combined with addition of three amino acids (15 mmol/L glutamic acid, 15 mmol/L cysteine, and 15 mmol/L glycine).  相似文献   

10.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   

11.
The extracellular inulinase structural gene was isolated from the genomic DNA of the marine yeast Pichia guilliermondii strain 1 by PCR. The gene had an open reading frame of 1,542 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 514 amino acid residues of a protein with a putative signal peptide of 18 amino acids and the calculated molecular mass of 58.04 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNXPNGL) and (RDPKVF). It also had ten conserved putative N-glycosylation sites. The inulinase from P. guilliermondii strain 1 was found to be closely related to that from Kluyveromyces marxianus. The inulinase gene without the signal sequence was subcloned into pPICZαA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum activity of 58.7 ± 0.12 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. A large amount of monosaccharides, disaccharides and oligosaccharides were detected after the hydrolysis of inulin with the crude recombinant inulinase.  相似文献   

12.
The xylanase gene xyn II from Aspergillus usamii E001 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K and integrated into the genome of a methylotrophic yeast, P. pastoris GS115, by electroporation. His+ transformants were screened for on the basis of their resistance to G418 and activity assay. A transformant, P. pastoris GSC12, which showed resistance to over 6 mg G418/ml and highest xylanase activity was selected. Recombinant xylanase was secreted by P. pastoris GSC12 24 h after methanol induction of shake-flask cultures, and reached a final yield of 3139. About 68 U/mg 120 h after the induction. The molecular mass of this xylanase was estimated to be 21 kDa by SDS-PAGE. The optimum pH and temperature were 4.2 and 50 °C, respectively. Xylanase was stable below 50 °C and within pH 3.0–7.0. Its activity was increased by EDTA and Co2+ ion and strongly inhibited by Mn2+, Li+ and Ag+ ions. The K m and V max values with birchwood xylan as the substrate were found to be 5.56 mg/ml and 216 μmol/mg/min, respectively. This is the first report on expression and characterization of xylanase from A. usamii in P. pastoris. The hydrolysis products consisted of xylooligosaccharides together with a small amount of xylose. This property made the enzyme attractive for industrial purposes, as relatively pure xylooligosaccharides could be obtained.  相似文献   

13.
Proteolytic degradation is the primary obstacle in the use of the yeast Pichia pastoris for the expression of recombinant proteins. During the production of a recombinant Plasmodium falciparum circumsporozoite protein in this system, the (NANP) n repeats region at the N-terminus were completely proteolytically degraded. To remove the potential proteolytic site within the recombinant protein, different strategies were tried, including adjusting the cultivation conditions and mutating the sequence at the junction of the repeat domain and C-terminal region, but the degradation continued. However, modification of the N-terminal sequence by adding an epitope-based peptide to the N-terminus not only protected the repeat domain from cleavage by native proteases during longer induction in the yeast host and purification process, but also stabilized this recombinant protein emulsified with adjuvant ISA720 for at least 6 months. The results showed that proteolytic degradation of the recombinant circumsporozoite protein produced in P. pastoris was amino acid sequence (NANP)-specific, and that this effect was likely dependent on the conformation of the recombinant protein.  相似文献   

14.
The gene encoding translation elongation factor 1-α from the yeast Pichia pastoris was cloned. The gene revealed an open reading frame of 1,380 bp with the potential to encode a polypeptide of 459 amino acids with a calculated mass of 50.1 kDa. The potential of the promoter (P TEF1 ) in P. pastoris was investigated with comparison to the glyceraldehyde-3-phosphate dehydrogenase promoter (P GAP ) by using a bacterial lipase gene as a reporter gene. P TEF1 demonstrated a tighter growth-associated expression mode, improved functioning in the presence of high glucose concentrations, and promoter activities that yielded recombinant protein at levels similar to or in one case greater than P GAP . The sequence of the gene was deposited in GenBank under accession no. EF014948.  相似文献   

15.
Glucoamylase is an industrially extremely important enzyme in the fermentative production of ethanol, used in the enzymatic conversion of starch into high glucose and fructose syrups. The aim of this study is to construct a Rhizopus arrhizus glucoamylase gene (RaGA)—introns artificially spliced by PCR—suitable for expression in S. cerevisiae host and tried expressing in Picha pastoris. In previous work, we failed in amplifying glucoamylase gene from R. arrhizus by RT-PCR, so several primers were designed to splicing the introns by PCR in vitro. Sequence analysis shown that all introns in the RaGA were deleted correctly and no mutant was induced in the extrons compared with the RaGA gene originally cloned. The RaGA gene artificially constructed was transferred into P. pastoris integrative expression vectors pPIC9 (containing а-factor). Consequently, the plasmids pPIC9-RaGA was lineared by SacI and inserted into P. pastoris GS115 (His) genome downstream of the 5′AOX1 promoter by the method of electroporation. Induction by 0.75% methanol for 72 h led to synthesis of secreted glucoamylase. So it is demonstrated that the glucoamylase gene has been expressed in and secreted from P. pastoris.  相似文献   

16.
Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the -Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the -subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.  相似文献   

17.
An oxygen transfer model was established for Pichia pastoris growing on glycerol and methanol in a stirred tank bioreactor and expressing a recombinant human serum albumin (rHSA). This was based on pseudo-steady state mass balance, where the volumetric O2 transfer coefficient, k L a, was estimated as a function of power input per unit volume and aeration rate. Under pseudo-steady state, the O2 transfer rate model matched the O2 uptake rate obtained from a previous macrokinetic model. This procedure was also applied to estimate biomass concentration by using the on-line rolling identification approach.  相似文献   

18.
The vhb gene encoding Vitreoscilla haemoglobin (VHb) was transferred to barley with the aim of studying the role of oxygen availability in germination and growth. Previous findings indicate that VHb expression improves the efficiency of energy generation during oxygen-limited growth, and germination is known to be an energy demanding growth stage during which the embryos also suffer from oxygen deficiency. When subjected to oxygen deficiency, the roots of vhb-expressing barley plants showed a smaller increase in alcohol dehydrogenase (ADH) activity than those of the control plants. This indicates that VHb plants experienced less severe oxygen deficiency than the control plants, possibly due to the ability of VHb to substitute ADH for recycling NADH and maintaining glycolysis. In contrast to previous findings, we found that constitutive vhb expression did not improve the germination rate of barley kernels in any of the conditions studied. In some cases, vhb expression even slowed down germination slightly. VHb production also appeared to restrict root formation in young seedlings. The adverse effects of VHb on germination and root growth may be related to its ability to scavenge nitric oxide (NO), an important signal molecule in both seed germination and root formation. Because NO has both cytotoxic and stimulating properties, the effect of vhb expression in plants may depend on the level and role of endogenous NO in the conditions studied. VHb production also affected the levels of endogenous barley haemoglobin, which may explain the relatively moderate effects of VHb in this study.  相似文献   

19.
Human antimicrobial peptide CAP18/LL37 (hCAP18/LL37) was expressed in Pichia pastoris and its antibacterial activity was tested against pathogenic bacteria. The full length ORF of hCAP18/LL37 was cloned into the pPICZaA vector followed by integration into the genomic AOX1 gene of P. pastoris. Agar diffusion assay demonstrated that the different hCAP18/LL37 transformants showed various antibacterial activities against Staphylococcus aureus, Micrococcus luteus, and Salmonella gastroenteritis. The secreted form of hCAP18/LL37 exhibited its maximum activity after 72 h incubation with 2% methanol in MM media, not in BMM. This result suggests that the yeast secreted expression system can be used as a production tool of antimicrobial peptides for industrial or pharmaceutical application.  相似文献   

20.
The constitutive expression of human cathelicidin LL-37 antimicrobial peptide was achieved using the methylotrophic yeast, Pichia pastoris. An LL-37 cDNA clone was amplified by PCR using human fetal cDNA library as template. The 111 bp fragment encoding mature LL-37 gene was subcloned into pGAPZ-E, an episomal form of the pGAPZB vector incorporating PARS1. It was then transformed into the P. pastoris X-33 strain for intracellular expression. A small peptide with a molecular mass of about 5 kDa was detected by 17% peptide-PAGE analysis. The recombinant LL-37 peptide was purified from the gel and its amino acid sequence was determined by LC-ESI-MS/MS analysis. The initiating amino acid, methionine, was still attached to the N-terminal region of recombinant LL-37. LL-37 crude extract from P. pastoris showed an antimicrobial activity against Micrococcus luteus as the test strain. The successful expression of human LL-37 indicates that the system may be applicable to the expression of other human defensins without resorting to fusion protein constructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号