首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of charged phospholipid membranes on the conformational state of the water-soluble fragment of cytochrome b5 has been investigated by a variety of techniques at neutral pH. The results of this work provide the first evidence that aqueous solutions with high phospholipid/protein molar ratios (pH 7.2) induce the cytochrome to undergo a structural transition from the native conformation to an intermediate state with molten-globule like properties that occur in the presence of an artificial membrane surface and that leads to binding of the protein to the membrane. At other phospholipid/protein ratios, equilibrium was observed between cytochrome free in solution and cytochrome bound to the surface of vesicles. Inhibition of protein binding to the vesicles with increasing ionic strength indicated for the most part an electrostatic contribution to the stability of cytochrome b5-vesicle interactions at pH 7.2. The possible physiological role of membrane-induced conformational change in the structure of cytochrome b5 upon the interaction with its redox partners is discussed.  相似文献   

2.
The influence of charged phospholipid membranes on the conformational state of the water-soluble fragment of cytochrome b5 has been investigated by a variety of techniques at neutral pH. The results of this work provide the first evidence that aqueous solutions with high phospholipid/protein molar ratios (pH 7.2) induce the cytochrome to undergo a structural transition from the native conformation to an intermediate state with molten-globule like properties that occur in the presence of an artificial membrane surface and that leads to binding of the protein to the membrane. At other phospholipid/protein ratios, equilibrium was observed between cytochrome free in solution and cytochrome bound to the surface of vesicles. Inhibition of protein binding to the vesicles with increasing ionic strength indicated for the most part an electrostatic contribution to the stability of cytochrome b5vesicle interactions at pH 7.2. The possible physiological role of membrane-induced conformational change in the structure of cytochrome b5 upon the interaction with its redox partners is discussed.  相似文献   

3.
Regulation of programmed cell death by Bcl-xL is dependent on both its solution and integral membrane conformations. A conformational change from solution to membrane is also important in this regulation. This conformational change shows a pH-dependence similar to the translocation domain of diphtheria toxin, where an acid-induced molten globule conformation in the absence of lipid vesicles mediates the change from solution to membrane conformations. By contrast, Bcl-xL deltaTM in the absence of lipid vesicles exhibits no gross conformational changes upon acidification as observed by near- and far-UV circular dichroism spectropolarimetry. Additionally, no significant local conformational changes upon acidification were observed by heteronuclear NMR spectroscopy of Bcl-xL deltaTM. Under conditions that favor the solution conformation (pH 7.4), the free energy of folding for Bcl-xL deltaTM (deltaG(o)) was determined to be 15.8 kcal x mol(-1). Surprisingly, under conditions that favor a membrane conformation (pH 4.9), deltaG(o) was 14.6 kcal x mol(-1). These results differ from those obtained with many other membrane-insertable proteins where acid-induced destabilization is important. Therefore, other contributions must be necessary to destabilize the solution conformation Bcl-xL and favor the membrane conformation at pH 4.9. Such contributions might include the presence of a negatively charged membrane or an electrostatic potential across the membrane. Thus, for proteins that adopt both solution and membrane conformations, an obligatory molten globule intermediate may not be necessary. The absence of a molten globule intermediate might have evolved to protect Bcl-xL from intracellular proteases as it undergoes this conformational change essential for its activity.  相似文献   

4.
Cyt c (cytochrome c) has been traditionally envisioned as rapidly diffusing in two dimensions at the surface of the mitochondrial inner membrane when not engaged in redox reactions with physiological partners. However, the discovery of the extended lipid anchorage (insertion of an acyl chain of a bilayer phospholipid into the protein interior) suggests that this may not be exclusively the case. The physical and structural factors underlying the conformational changes that occur upon interaction of ferrous cyt c with phospholipid membrane models have been investigated by monitoring the extent of the spin state change that result from this interaction. Once transiently linked by electrostatic forces between basic side chains and phosphate groups, the acyl chain entry may occur between two parallel hydrophobic polypeptide stretches that are surrounded by positively charged residues. Alteration of these charges, as in the case of non-trimethylated (TML72K) yeast cyt c and Arg91Nle horse cyt c (where Nle is norleucine), led to a decline in the binding affinity for the phospholipid liposomes. The electrostatic association was sensitive to ionic strength, polyanions and pH, whereas the hydrophobic interactions were enhanced by conformational changes that contributed to the loosening of the tertiary structure of cyt c. In addition to proposing a mechanistic model for the extended lipid anchorage of cyt c, we consider what, if any, might be the physiological relevance of the phenomenon.  相似文献   

5.
Attenuated total reflection Fourier transform infrared spectroscopy was used to investigate the secondary structure of the surfactant protein SP-B. Nearly half of the polypeptide chain is folded in an alpha-helical conformation. No significant change of the secondary structure content was observed when the protein is associated to a lipid bilayer of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) or of dipalmitoylphosphatidylglycerol (DPPG). The parameters related to the gamma w(CH2) vibration of the saturated acyl chains reveal no modification of the conformation or orientation of the lipids in the presence of SP-B. A model of orientation of the protein at the lipid/water interface is proposed. In this model, electrostatic interactions between charged residues of SP-B and polar headgroups of PG, and the presence of small hydrophobic alpha-helical peptide stretches slightly inside the bilayers, would maintain SP-B at the membrane surface.  相似文献   

6.
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.  相似文献   

7.
Islet amyloid polypeptide (IAPP) is a pancreatic hormone and one of a number of proteins that are involved in the formation of amyloid deposits in the islets of Langerhans of type II diabetes mellitus patients. Though IAPP-membrane interactions are known to play a major role in the fibrillation process, the mechanism and the peptide's conformational changes involved are still largely unknown. To obtain new insights into the conformational dynamics of IAPP upon its aggregation at membrane interfaces and to relate these structures to its fibril formation, we studied the association of IAPP at various interfaces including neutral as well as charged phospholipids using infrared reflection absorption spectroscopy. The results obtained reveal that the interaction of human IAPP with the lipid interface is driven by the N-terminal part of the peptide and is largely driven by electrostatic interactions, as the protein is able to associate strongly with negatively charged lipids only. A two-step process is observed upon peptide binding, involving a conformational transition from a largely alpha-helical to a beta-sheet conformation, finally forming ordered fibrillar structures. As revealed by simulations of the infrared reflection absorption spectra and complementary atomic force microscopy studies, the fibrillar structures formed consist of parallel intermolecular beta-sheets lying parallel to the lipid interface but still contain a significant number of turn structures. We may assume that these dynamical conformational changes observed for negatively charged lipid interfaces play an important role as the first steps of IAPP-induced membrane damage in type II diabetes.  相似文献   

8.
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.  相似文献   

9.
Alpha-sarcin is an exquisitely specific ribonuclease that binds and cleaves a single phosphodiester bond in the large rRNA of the eukaryotic ribosome, inactivating it. To better understand this remarkable activity, the contributions of the active site residues (His 50, Glu 96, and His 137) to the conformational stability have been determined as a function of pH using variant proteins containing uncharged substitutes. Wild-type alpha-sarcin and the variants are maximally stable near pH 5.5, coinciding with the pH of optimal activity. A comparison of the stability vs pH profiles determined by thermal denaturation experiments to those calculated on the basis of pKa values shows that the charged forms of Glu 96 and His 137 compromise the enzyme's stability, lowering it. In contrast to barnase, there is little evidence for significant electrostatic interactions in the denatured states of alpha-sarcin or its active site variants between pH 3.5 and pH 8.5. Alpha-sarcin contains a long beta-hairpin and surface loops which are highly positively charged and which play key roles in membrane translocation and in ribosome binding. These positive charges decrease the stability of alpha-sarcin, particularly below pH 5. Hydrogen exchange measurements have been performed at pH 5.5 and reveal that the catalytic residues are firmly anchored in highly stable elements of secondary structure. Significant, though lower, levels of protection are observed for many amide protons in the positively charged beta-hairpin and long loops.  相似文献   

10.
Cyt1A is a cytolytic toxin produced by Bacillus thuringiensis var. israelensis. Due to its toxicity in vivo against mosquitoes and black flies, it is used as an environmentally friendly insecticide, although its mode of action is not completely understood. The toxin is membrane-active, but its membrane-bound conformation is unknown. In the absence of direct structural data, fluorescence spectroscopy was used to obtain indirect information on Cyt1A conformation changes in the environment mimicking the vicinity of the lipid membrane (lower pH and increased ionic strength). With decreasing pH, Cyt1A's surface hydrophobicity increased, which is consistent with an increased interaction with model membranes at low pH values, as observed previously. The pK(a) value of this conformation change is 4.4+/-0.1. Intrinsic tryptophan fluorescence decreased with decreasing pH, and the pK(a) value was the same as the one determined with synthetic probes. The protein has two types of hydrophobic binding sites, and at low pH these sites bind more probe molecules (bis-ANS) with a higher affinity than at pH 7.4. When bound to the lipid, the toxin exhibited conformation similar to the molten-globule state and showed some characteristics also observed at low pH. However, the conformation of the lipid-bound toxin did not depend on pH. Neutral salts like NaCl and KCl induced conformational changes at neutral pH, but not at low pH. These changes were most probably due to specific interactions of the salt ions with the charged amino acids on the protein surface rather than due to general effects such as Hofmeister and Debye-Hückel. Our results might contribute to elucidating the mode of action of Cyt1A, and perhaps also to improving the formulation of the insecticidal preparations.  相似文献   

11.
Differential scanning calorimetry demonstrates that the bleached form of the purple membrane does not possess any measurable thermal transition in water, up to 105 degrees C, whereas in 0.1 M phosphate pH 7.5 it shows a transition at about 82 degrees C, with an enthalpy of 110 kJ/mol. In the latter medium, the native membrane shows the main transition at 97 degrees C, with an enthalpy of 390 kJ/mol. The reduced form of the purple membrane shows two small transitions in water, as well as in 0.1 M phosphate, which do not seem to be related to the main thermal transition of the native membrane. Fourier-transform infrared spectra in D2O show that the two modified samples, as well as the native one, undergo similar secondary structural changes upon thermal denaturation. These changes appear to extend through a wide temperature range for both modified forms, particularly for the bleached one. The results suggest that the main thermal transition in the purple membrane is due to a cooperative conformational change involving the disruption of the network of electrostatic and hydrogen-bonding interactions which originate from the protonated Schiff base. In the two modified membranes, these conformational changes appear to proceed smoothly through a rather low or non-cooperative process. The thermal behaviour of the bleached membrane in water resembles that of the molten globule state described for several globular proteins.  相似文献   

12.
Fourier transform infrared (FTIR) spectroscopy has been used to study, at a molecular level, the interactions between beta-lactoglobulin (BLG), the most abundant globular protein in milk, and some lipids (sphingomyelin, SM; dimyristoylphosphatidylcholine, DMPC; dipalmytoylphosphatidylcholine, DPPC; dimyristoylphosphatidylserine-sodium salt, DMPS; dipalmitoylphosphatidylserine-sodium salt, DPPS) constituting the milk fat globule membrane (MFGM). The interactions were monitored with respect to alteration in the secondary structure of BLG, as registered by the amide I' band, and phospholipid conformation, as revealed by the acyl chain and carbonyl bands. The results show that neither the conformation nor the thermotropism of neutral bilayers containing DMPC or DPPC is affected by BLG. Reciprocally, the secondary structure and thermal behaviour of pure BLG remain the same in the presence of PC. These results suggest that no interaction occurs between PC and BLG, in agreement with previous studies. However, it is found that BLG interacts with neutral bilayers constituted by milk SM lipids, increasing gauche conformers and thus conformational disorder of the lipid acyl chains. This perturbing effect has been attributed to a partial penetration of BLG into the hydrophobic core of the bilayer, which allows hydrophobic interactions between BLG and SM. Moreover, the fact that SM possesses the same headgroup of PC implies that the head group does not prevent the occurrence of BLG-lipid interactions and other lipid regions can control the binding of BLG to lipids. Furthermore, BLG was found to interact electrostatically with charged bilayers containing PS, leading to a rigidification of the lipid hydrocarbon chains and a dehydration of the interfacial region. This last effect suggests that the protein limits the accessibility of water molecules to the interfacial region of the phospholipids by its presence at the membrane surface.  相似文献   

13.
Raman spectroscopy and X-ray diffraction are used to investigate the influence of surface charges on the structure of ionizable lipid membranes of dimyristoylmethylphosphatidic acid. The membrane surface charge density is regulated by varying the pH of the aqueous phase. Changes of the conformational order of the lipid chains are determined from the intensity of the CC stretch chain vibrations around 1100 cm?1 in a lipid Raman spectrum. In going from an electrical neutral to a negatively charged membrane, the conformational order is reduced by 5% in the ordered and by 9% in the fluid membrane phase, corresponding to 0.6 and 0.8 CC bonds, respectively, which change from a trans to a gauche conformation. The electrostatically induced conformational change is mainly concentrated at the lipid chain ends as indicated by the spectral variations of the 890 cm?1 CH3 rocking band of the chain termini. The X-ray diffraction experiments show that increasing the surface charge density in the ordered membrane phase leads to a lateral expansion of the packing of the lipid polar groups, whereas the packing of the lipid chains in a plane perpendicular to the chain axes remains constant, indicating an increase of the tilt of the lipid chains from δ = 10° (pH 3) to δ = 27° (pH 9).  相似文献   

14.
Chemically modified lysozymes, namely: N-succinyl lysozyme, glycine methyl ester of N-succinyl lysozyme and oxoindole lysozyme have been prepared. Aggregation, fusion and leakage of phospholipid vesicles induced by these derivatives have been studied in comparison with the effect of the unmodified protein. The experiments were carried out with negatively charges 9PC/ PA, 9:1) and uncharged (PC and PC/DOPE/Chol (10:5:5)) lipid vesicles of different packing. Fusion and aggregation of negatively charged phospholipid vesicles is induced by proteins positively charged at pH 7·0 involving electrostatic interactions. a similar pattern on fusion and aggregation of the least stably packed lipid vesicles points also to hydrophobic forces playing a role in the lipid-protein interaction. A conformational change of the protein involved increasing β-turns, loops and unordered structure at the expenses of β-sheet without affecting λhelix content. The conformational effect is necessary to provoke the effects studied, since one of the derivatives (N-succinyl lysozyme) neither changes conformation nor causes aggregation and fusion of vesicles. However, there is no relationship between lysozyme activity and fusion or aggregation of lipid vesicles that catalytic and fusogenci sites of, indicating lysozyme are topographically different  相似文献   

15.
Pandinin 2 (Pin2) is an alpha-helical polycationic peptide, identified and characterized from venom of the African scorpion Pandinus imperator with high antimicrobial activity against Gram-positive bacteria and less active against Gram-negative bacteria, however it has demonstrated strong hemolytic activity against sheep red blood cells. In the chemically synthesized Pin2GVG analog, the GVG motif grants it low hemolytic activity while keeping its antimicrobial activity. In this work, we performed 12 μs all-atom molecular dynamics simulation of the antimicrobial peptides (AMPs) Pin2 and Pin2GVG to explore their adsorption mechanism and the role of their constituent amino acid residues when interacting with pure POPC and pure POPG membrane bilayers. Starting from an α-helical conformation, both AMPs are attracted at different rates to the POPC and POPG bilayer surfaces due to the electrostatic interaction between the positively charged amino acid residues and the charged moieties of the membranes. Since POPG is an anionic membrane, the PAMs adhesion is stronger to the POPG membrane than to the POPC membrane and they are stabilized more rapidly. This study reveals that, before the insertion begins, Pin2 and Pin2GVG remained partially folded in the POPC surface during the first 300 and 600 ns, respectively, while they are mostly unfolded in the POPG surface during most of the simulation time. The unfolded structures provide for a large number of intermolecular hydrogen bonds and stronger electrostatic interactions with the POPG surface. The results show that the aromatic residues at the N-terminus of Pin2 initiate the insertion process in both POPC and POPG bilayers. As for Pin2GVG in POPC the C-terminus residues seem to initiate the insertion process while in POPG this process seems to be slowed down due to a strong electrostatic attraction. The membrane conformational effects upon PAMs binding are measured in terms of the area per lipid and the contact surface area. Several replicas of the systems lead to the same observations.  相似文献   

16.
Nishi K  Maruyama T  Halsall HB  Handa T  Otagiri M 《Biochemistry》2004,43(32):10513-10519
Alpha(1)-acid glycoprotein (AGP) consists of 183 amino acid residues and 5 carbohydrate chains and binds to basic and neutral drugs as well as steroid hormones. We investigated the structural properties and ligand-binding capacity of AGP under mild acidic conditions and its interactions with liposomes prepared from neutral or anionic lipids and the neutral drug, progesterone. Interestingly, AGP had a unique structure at pH 4.5, at which the tertiary structure changed, whereas the secondary structure remained intact. Furthermore, the binding capacity of AGP for progesterone did not significantly change under these conditions. It was also observed that AGP was strongly bound to the anionic membrane at pH 4.5, forming an alpha-helix-rich structure from the original beta-sheet-rich structure, which significantly decreased the binding capacity of AGP for progesterone. The structural transitions as well as the membrane binding were suppressed by adding NaCl. These results indicate that AGP has a unique structure on the membrane surface under mild acidic conditions. The conformational change induces binding to the membrane aided by electrostatic interaction, and AGP subsequently takes on a predominantly alpha-helical conformation.  相似文献   

17.
The amyloid protein precursor (APP) was incorporated into liposomes or phospholipid monolayers. APP insertion into liposomes required neutral lipids, such as L-alpha-phosphatidylcholine, in the target membrane. It was prevented in vesicles containing L-alpha-phosphatidylserine. The insertion was enhanced in acidic solutions, suggesting that it is modulated by specific charge/charge interactions. Surface-active properties and behaviour of APP were characterized during insertion of the protein in monomolecular films of L-alpha-phosphatidylcholine, L-alpha-phosphatidylethanolamine or L-alpha-phosphatidylserine. The presence of the lipid film enhanced the rate of adsorption of the protein at the interface, and the increase in surface pressure was consistent with APP penetrating the lipid film. The adsorption of APP on the lipid monolayers displayed a significant head group dependency, suggesting that the changes in surface pressure produced by the protein were probably affected by electrostatic interactions with the lipid layers. Our results indicate that the penetration of the protein into the lipid monolayer is also influenced by the hydrophobic interactions between APP and the lipid. CD spectra showed that a large proportion of the alpha-helical secondary structure of APP remained preserved over the pH or ionic strength ranges used. Our findings suggest that APP/membrane interactions are mediated by the lipid composition and depend on both electrostatic and hydrophobic effects, and that the variations observed are not due to major secondary structural changes in APP. These observations may be related to the partitioning of APP into membrane microdomains.  相似文献   

18.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

19.
Chicken liver bile acid-binding protein (L-BABP) is a member of the fatty acid-binding proteins super family. The common fold is a beta-barrel of ten strands capped with a short helix-loop-helix motif called portal region, which is involved in the uptake and release of non-polar ligands. Using multiple-run molecular dynamics simulations we studied the interactions of L-BABP with lipid membranes of anionic and zwitterionic phospholipids. The simulations were in agreement with our experimental observations regarding the electrostatic nature of the binding and the conformational changes of the protein in the membrane. We observed that L-BABP migrated from the initial position in the aqueous bulk phase to the interface of anionic lipid membranes and established contacts with the head groups of phospholipids through the side of the barrel that is opposite to the portal region. The conformational changes in the protein occurred simultaneously with the binding to the membrane. Remarkably, these conformational changes were observed in the portal region which is opposite to the zone where the protein binds directly to the lipids. The protein was oriented with its macrodipole aligned in the configuration of lowest energy within the electric field of the anionic membrane, which indicates the importance of the electrostatic interactions to determine the preferred orientation of the protein. We also identified this electric field as the driving force for the conformational change. For all the members of the fatty acid-binding protein family, the interactions with lipid membranes is a relevant process closely related to the uptake, release and transfer of the ligand. The observations presented here suggest that the ligand transfer might not necessarily occur through the domain that directly interacts with the lipid membrane. The interactions with the membrane electric field that determine orientation and conformational changes described here can also be relevant for other peripheral proteins.  相似文献   

20.
Cytochrome b5 is a membrane protein that comprises two fragments: one is water-soluble and heme-containing, and the other is hydrophobic and membrane-embedded. The function of electron transfer is performed by the former whose crystal structure is known; however, its conformational states when in the membrane field and interacting with other proteins are still to be studied. Previously, we proposed water-alcohol mixtures for modeling the effect of membrane surface on proteins, and used this approach to study the conformational behavior of positively charged cytochrome c as well as relatively neutral retinol-binding protein also functioning in the field of negatively charged membrane. The current study describes the conformational behavior of the negatively charged water-soluble fragment of cytochrome b5 as dependent on pH. Decreasing pH was shown to transform the fragment state from native to intermediate, similar to the molten globule reported earlier for other proteins in aqueous solutions: at pH 3.0, the fragment preserved a pronounced secondary structure and compactness but lost its rigid tertiary structure. A possible role of this intermediate state in cytochrome b5 functioning is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号