首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
As the first step in an investigation of the origin of genetic information, we study how some species of molecules are preserved over cell generations and play an important role in controlling the growth of a cell. We consider a model consisting of protocells. Each protocell contains two mutually catalysing molecule species (X and Y), each of which has catalytically active and inactive types. One of the species Y is assumed to have a slower synthesis speed. Through divisions of the protocells, the system reaches and remains in a state in which there are only a few active Y and almost no inactive Y molecules in most protocells, through the selection of very rare fluctuations. In this state, the active Y molecules are shown to control the behavior of the protocell. The minority molecule species act as the carrier of heredity, due to the relatively discrete nature of its population, in comparison with the majority species which behaves statistically in accordance with the law of large numbers. The minority controlled state may give rise to a selection pressure for mechanisms that ensure the transmission of the minority molecule. Once those mechanisms are in place, the minority molecule becomes the ideal storage device for information to be transmitted across generations, thus giving rise to "genetic information". The relevance of this minority controlled state to evolvability is also discussed.  相似文献   

2.
Why reproduce sexually?   总被引:2,自引:0,他引:2  
There is reason to believe that intense selection, such that only a small minority at the top of the fitness distribution has any appreciable chance of survival, can sometimes give sexual reproduction an immediate (one-life-cycle) advantage over asexual. The advantage must be great enough to balance the 50% loss of genetic material in meiosis.One model shows the advantage to be frequency-dependent in life cycles in which there are several asexual generations and one sexual. The observed frequency of sexual reproduction in such a life cycle is explained as an evolutionary equilibrium by this model. In another model the optimum frequency of asexual reproduction drops to zero as fecundity and competition increase. This explains the exclusively sexual reproduction of such fecund organism as elms and oysters. Once lost, asexual reproduction may be difficult to evolve secondarily. This explains the presence of such exclusively sexual, low-fecundity organisms as the higher vertebrates.  相似文献   

3.
The origin of heredity is studied as a recursive state in a replicatingprotocell consisting of many molecule species in mutually catalyzingreaction networks. Protocells divide when the number of molecules, increasing due to replication, exceeds a certain threshold. We study how the chemicals in a catalytic network can form recursive production states in the presence of errors in the replication process. Depending on the balance between the total number of molecules in a cell and the number of molecule species, we have found three phases; a phase without a recursive production state, a phase with itinerancy over a few recursive states, and a phase with fixedrecursive production states. Heredity is realized in the latter two phaseswhere molecule species that are population-wise in the minority are preserved and control the phenotype of the cell. It is shown that evolvability is realized in the itinerancy phase, where a change in the number of minority molecules controls a change of the chemical state.  相似文献   

4.
Sexual reproduction reshapes the genetic architecture of digital organisms   总被引:4,自引:0,他引:4  
Modularity and epistasis, as well as other aspects of genetic architecture, have emerged as central themes in evolutionary biology. Theory suggests that modularity promotes evolvability, and that aggravating (synergistic) epistasis among deleterious mutations facilitates the evolution of sex. Here, by contrast, we investigate the evolution of different genetic architectures using digital organisms, which are computer programs that self-replicate, mutate, compete and evolve. Specifically, we investigate how genetic architecture is shaped by reproductive mode. We allowed 200 populations of digital organisms to evolve for over 10 000 generations while reproducing either asexually or sexually. For 10 randomly chosen organisms from each population, we constructed and analysed all possible single mutants as well as one million mutants at each mutational distance from 2 to 10. The genomes of sexual organisms were more modular than asexual ones; sites encoding different functional traits had less overlap and sites encoding a particular trait were more tightly clustered. Net directional epistasis was alleviating (antagonistic) in both groups, although the overall strength of this epistasis was weaker in sexual than in asexual organisms. Our results show that sexual reproduction profoundly influences the evolution of the genetic architecture.  相似文献   

5.
The majority of work on genetic regulatory networks has focused on environmental and mutational robustness, and much less attention has been paid to the conditions under which a network may produce an evolvable phenotype. Sexually dimorphic characters often show rapid rates of change over short evolutionary time scales and while this is thought to be due to the strength of sexual selection acting on the trait, a dimorphic character with an underlying pleiotropic architecture may also influence the evolution of the regulatory network that controls the character and affect evolvability. As evolvability indicates a capacity for phenotypic change and mutational robustness refers to a capacity for phenotypic stasis, increases in evolvability may show a negative relationship with mutational robustness. I tested this with a computational model of a genetic regulatory network and found that, contrary to expectation, sexually dimorphic characters exhibited both higher mutational robustness and higher evolvability. Decomposition of the results revealed that linkage disequilibrium within sex and linkage disequilibrium between sexes, two of the three primary components of additive genetic variance and evolvability in quantitative genetics models, contributed to the differences in evolvability between sexually dimorphic and monomorphic populations. These results indicate that producing two pleiotropically linked characters did not constrain either the production of a robust phenotype or adaptive potential. Instead, the genetic system evolved to maximize both quantities.  相似文献   

6.
The short-term evolvability of a character is closely related to its level of additive genetic variation. However, a large component of the variation in any one character may be pleiotropically linked to other characters under the influence of different selective factors. Therefore, the organization of the organism into quasi-independent modules may be an important prerequisite for evolvability. In this paper we propose to study character evolvability in terms of conditional genetic variation. By estimating the amount of genetic variation in a character, y, that is independent of other characters, x, we can assess the evolvability of y when there is stabilizing selection on x. We suggest that systematic use of conditioning may help build a picture of modular organization and quasi-independent evolvability. As an illustration, we use this approach to assess the evolvability of floral characters in Dalechampia scandens (Euphorbiaceae). Although our study population had relatively low levels of genetic variation at the outset, we find evidence that conditioning may lead to substantial further reduction in the genetic variation available for independent adaptation. This provides additional evidence that the D. scandens blossom is constrained in its short-term evolvability.  相似文献   

7.
The mutation matrix and the evolution of evolvability   总被引:5,自引:0,他引:5  
Evolvability is a key characteristic of any evolving system, and the concept of evolvability serves as a unifying theme in a wide range of disciplines related to evolutionary theory. The field of quantitative genetics provides a framework for the exploration of evolvability with the promise to produce insights of global importance. With respect to the quantitative genetics of biological systems, the parameters most relevant to evolvability are the G-matrix, which describes the standing additive genetic variances and covariances for a suite of traits, and the M-matrix, which describes the effects of new mutations on genetic variances and covariances. A population's immediate response to selection is governed by the G-matrix. However, evolvability is also concerned with the ability of mutational processes to produce adaptive variants, and consequently the M-matrix is a crucial quantitative genetic parameter. Here, we explore the evolution of evolvability by using analytical theory and simulation-based models to examine the evolution of the mutational correlation, r(mu), the key parameter determining the nature of genetic constraints imposed by M. The model uses a diploid, sexually reproducing population of finite size experiencing stabilizing selection on a two-trait phenotype. We assume that the mutational correlation is a third quantitative trait determined by multiple additive loci. An individual's value of the mutational correlation trait determines the correlation between pleiotropic effects of new alleles when they arise in that individual. Our results show that the mutational correlation, despite the fact that it is not involved directly in the specification of an individual's fitness, does evolve in response to selection on the bivariate phenotype. The mutational variance exhibits a weak tendency to evolve to produce alignment of the M-matrix with the adaptive landscape, but is prone to erratic fluctuations as a consequence of genetic drift. The interpretation of this result is that the evolvability of the population is capable of a response to selection, and whether this response results in an increase or decrease in evolvability depends on the way in which the bivariate phenotypic optimum is expected to move. Interestingly, both analytical and simulation results show that the mutational correlation experiences disruptive selection, with local fitness maxima at -1 and +1. Genetic drift counteracts the tendency for the mutational correlation to persist at these extreme values, however. Our results also show that an evolving M-matrix tends to increase stability of the G-matrix under most circumstances. Previous studies of G-matrix stability, which assume nonevolving M-matrices, consequently may overestimate the level of instability of G relative to what might be expected in natural systems. Overall, our results indicate that evolvability can evolve in natural systems in a way that tends to result in alignment of the G-matrix, the M-matrix, and the adaptive landscape, and that such evolution tends to stabilize the G-matrix over evolutionary time.  相似文献   

8.
Understanding the changes in genetic variance which may occur as populations move from nature into captivity has been considered important when populations in captivity are used as models of wild ones. However, the inherent significance of these changes has not previously been appreciated in a conservation context: are the methods aimed at founding captive populations with gene diversity representative of natural populations likely also to capture representative quantitative genetic variation? Here, I investigate changes in heritability and a less traditional measure, evolvability, between nature and captivity for the large milkweed bug, Oncopeltus fasciatus, to address this question. Founders were collected from a 100-km transect across the north-eastern US, and five traits (wing colour, pronotum colour, wing length, early fecundity and later fecundity) were recorded for founders and for their offspring during two generations in captivity. Analyses reveal significant heritable variation for some life history and morphological traits in both environments, with comparable absolute levels of evolvability across all traits (0-30%). Randomization tests show that while changes in heritability and total phenotypic variance were highly variable, additive genetic variance and evolvability remained stable across the environmental transition in the three morphological traits (changing 1-2% or less), while they declined significantly in the two life-history traits (5-8%). Although it is unclear whether the declines were due to selection or gene-by-environment interactions (or both), such declines do not appear inevitable: captive populations with small numbers of founders may contain substantial amounts of the evolvability found in nature, at least for some traits.  相似文献   

9.
Evolvability, the ability of populations to adapt, can evolve through changes in the mechanisms determining genetic variation and in the processes of development. Here we construct and evolve a simple developmental model in which the pleiotropic effects of genes can evolve. We demonstrate that selection in a changing environment favors a specific pattern of variability, and that this favored pattern maximizes evolvability. Our analysis shows that mutant genotypes with higher evolvability are more likely to increase to fixation. We also show that populations of highly evolvable genotypes are much less likely to be invaded by mutants with lower evolvability, and that this dynamic primarily shapes evolvability. We examine several theoretical objections to the evolution of evolvability in light of this result. We also show that this result is robust to the presence or absence of recombination, and explore how nonrandom environmental change can select for a modular pattern of variability.  相似文献   

10.
Our view of heredity can potentially be distorted by the ease of introducing heritable changes in the replicating gene sequences but not in the cycling assembly of regulators around gene sequences. Here, key experiments that have informed the understanding of heredity are reinterpreted to highlight this distortion and the possible variety of heritable changes are considered. Unlike heritable genetic changes, which are always associated with mutations in gene sequence, heritable epigenetic changes can be associated with physical or chemical changes in molecules or only changes in the system. The transmission of cycling stores along the continuous lineage of cells that connects successive generations creates waves of activity and localization of the molecules that together form the cell code for development in each generation. As a result, heritable epigenetic changes can include any that can alter a wave such as changes in form, midline, frequency, amplitude, or phase. Testing this integrated view of all heritable information will require the concerted application of multiple experimental approaches across generations.  相似文献   

11.
The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose‐limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations—six from a population subsample and six from a single randomly selected clone—from each of the six glucose‐evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose‐limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes—iclR, nadR, spoT, and rbs—that were mutated in most glucose‐evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short‐term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits.  相似文献   

12.
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.  相似文献   

13.
Phenotypic flexibility, or the within-genotype, context-dependent, variation in behaviour expressed by single reproductively mature individuals during their lifetimes, often impart a selective advantage to organisms and profoundly influence their survival and reproduction. Another phenomenon apparently not under direct genetic control is behavioural inheritance whereby higher animals are able to acquire information from the behaviour of others by social learning, and, through their own modified behaviour, transmit such information between individuals and across generations. Behavioural information transfer of this nature thus represents another form of inheritance that operates in many animals in tandem with the more basic genetic system. This paper examines the impact that phenotypic flexibility, behavioural inheritance and socially transmitted cultural traditions may have in shaping the structure and dynamics of a primate society — that of the bonnet macaque (Macaca radiata), a primate species endemic to peninsular India. Three principal issues are considered: the role of phenotypic flexibility in shaping social behaviour, the occurrence of individual behavioural traits leading to the establishment of social traditions, and the appearance of cultural evolution amidst such social traditions. Although more prolonged observations are required, these initial findings suggest that phenotypic plasticity, behavioural inheritance and cultural traditions may be much more widespread among primates than have previously been assumed but may have escaped attention due to a preoccupation with genetic inheritance in zoological thinking. This paper is dedicated with admiration and gratitude to the late Dr Raja Ramanna, a man who held all primates in great esteem.  相似文献   

14.
Stolovicki E  Dror T  Brenner N  Braun E 《Genetics》2006,173(1):75-85
The recruitment of a gene to a foreign regulatory system is a major evolutionary event that can lead to novel phenotypes. However, the evolvability potential of cells depends on their ability to cope with challenges presented by gene recruitment. To study this ability, we combined synthetic gene recruitment with continuous culture and online measurements of the metabolic and regulatory dynamics over long timescales. The gene HIS3 from the histidine synthesis pathway was recruited to the GAL system, responsible for galactose utilization in the yeast S. cerevisiae. Following a switch from galactose to glucose--from induced to repressed conditions of the GAL system--in histidine-lacking chemostats (where the recruited HIS3 is essential), the regulatory system reprogrammed to adaptively tune HIS3 expression, allowing the cells to grow competitively in pure glucose. The adapted state was maintained for hundreds of generations in various environments. The timescales involved and the reproducibility of separate experiments render spontaneous mutations an unlikely underlying mechanism. Essentially all cells could adapt, excluding selection over a genetically variable population. The results reveal heritable adaptation induced by the exposure to glucose. They demonstrate that genetic regulatory networks have the potential to support highly demanding events of gene recruitment.  相似文献   

15.
Chan S  Quigley M 《Bioethics》2007,21(8):439-448
Recent ethical and legal challenges have arisen concerning the rights of individuals over their IVF embryos, leading to questions about how, when the wishes of parents regarding their embryos conflict, such situations ought to be resolved. A notion commonly invoked in relation to frozen embryo disputes is that of reproductive rights: a right to have (or not to have) children. This has sometimes been interpreted to mean a right to have, or not to have, one's own genetic children. But can such rights legitimately be asserted to give rise to claims over embryos? We examine the question of property in genetic material as applied to gametes and embryos, and whether rights over genetic information extend to grant control over IVF embryos. In particular we consider the purported right not to have one's own genetically related children from a property‐based perspective. We argue that even if we concede that such (property) rights do exist, those rights become limited in scope and application upon engaging in reproduction. We want to show that once an IVF embryo is created for the purpose of reproduction, any right not to have genetically‐related children that may be based in property rights over genetic information is ceded. There is thus no right to prevent one's IVF embryos from being brought to birth on the basis of a right to avoid having one's own genetic children. Although there may be reproductive rights over gametes and embryos, these are not grounded in genetic information.  相似文献   

16.
Many evolutionary arguments are based on the assumption that quantitative characters are highly evolvable entities that can be rapidly moulded by changing selection pressures. The empirical evaluation of this assumption depends on having an operational measure of evolvability that reflects the ability of a trait to respond to a given external selection pressure. We suggest short-term evolvability be measured as expected proportional response in a trait to a unit strength of directional selection, where strength of selection is defined independently of character variation and in units of the strength of selection on fitness itself. We show that the additive genetic variance scaled by the square of the trait mean, IA, is such a measure. The heritability, h2, does not measure evolvability in this sense. Based on a diallel analysis, we use IA to assess the evolvability of floral characters in a population of the neotropical vine Dalechampia scandens (Euphorbiaceae). Although we are able to demonstrate that there is additive genetic variation in a number of floral traits, we also find that most of the traits are not expected to change by more than a fraction of a percent per generation. We provide evidence that the degree of among-population divergence of traits is related to their predicted evolvabilities, but not to their heritabilities.  相似文献   

17.
Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype–phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.  相似文献   

18.
Eldon B  Wakeley J 《Genetics》2006,172(4):2621-2633
We report a complex set of scaling relationships between mutation and reproduction in a simple model of a population. These follow from a consideration of patterns of genetic diversity in a sample of DNA sequences. Five different possible limit processes, each with a different scaled mutation parameter, can be used to describe genetic diversity in a large population. Only one of these corresponds to the usual population genetic model, and the others make drastically different predictions about genetic diversity. The complexity arises because individuals can potentially have very many offspring. To the extent that this occurs in a given species, our results imply that inferences from genetic data made under the usual assumptions are likely to be wrong. Our results also uncover a fundamental difference between populations in which generations are overlapping and those in which generations are discrete. We choose one of the five limit processes that appears to be appropriate for some marine organisms and use a sample of genetic data from a population of Pacific oysters to infer the parameters of the model. The data suggest the presence of rare reproduction events in which approximately 8% of the population is replaced by the offspring of a single individual.  相似文献   

19.
Assessing the evolutionary potential of animal populations in the wild is crucial to understanding how they may respond to selection mediated by rapid environmental change (e.g. habitat loss and fragmentation). A growing number of studies have investigated the adaptive role of behaviour, but assessments of its genetic basis in a natural setting remain scarce. We combined intensive biologging technology with genome‐wide data and a pedigree‐free quantitative genetic approach to quantify repeatability, heritability and evolvability for a suite of behaviours related to the risk avoidance‐resource acquisition trade‐off in a wild roe deer (Capreolus capreolus) population inhabiting a heterogeneous, human‐dominated landscape. These traits, linked to the stress response, movement and space‐use behaviour, were all moderately to highly repeatable. Furthermore, the repeatable among‐individual component of variation in these traits was partly due to additive genetic variance, with heritability estimates ranging from 0.21 ± 0.08 to 0.70 ± 0.11 and evolvability ranging from 1.1% to 4.3%. Changes in the trait mean can therefore occur under hypothetical directional selection over just a few generations. To the best of our knowledge, this is the first empirical demonstration of additive genetic variation in space‐use behaviour in a free‐ranging population based on genomic relatedness data. We conclude that wild animal populations may have the potential to adjust their spatial behaviour to human‐driven environmental modifications through microevolutionary change.  相似文献   

20.
What genotypic features explain the evolvability of organisms that have to accomplish many different tasks? The genotype of behaviorally complex organisms may be more likely to encode modular neural architectures because neural modules dedicated to distinct tasks avoid neural interference, i.e. the arrival of conflicting messages for changing the value of connection weights during learning. However, if the connection weights for the various modules are genetically inherited, this raises the problem of genetic linkage: favorable mutations may fall on one portion of the genotype encoding one neural module and unfavorable mutations on another portion encoding another module. We show that this can prevent the genotype from reaching an adaptive optimum. This effect is different from other linkage effects described in the literature and we argue that it represents a new class of genetic constraints. Using simulations we show that sexual reproduction can alleviate the problem of genetic linkage by recombining separate modules all of which incorporate either favorable or unfavorable mutations. We speculate that this effect may contribute to the taxonomic prevalence of sexual reproduction among higher organisms. In addition to sexual recombination, the problem of genetic linkage for behaviorally complex organisms may be mitigated by entrusting evolution with the task of finding appropriate modular architectures and learning with the task of finding the appropriate connection weights for these architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号