首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Some new analogues of ribonucleoside-5'-triphosphates modified in 3'-ribose position and base [CTP (3'NH2), CTP (3'NH2) (5Me), CTP (3'N3) (5 Me), RvTP (3'N3)] have been synthesized. The inhibitions of RNA-synthesis catalyzed by the influenza A viral RNA-polymerase in cell free system and by the RNA-polymerase II from mice liver in the system of cellular nuclei by these reagents have been compared. All the studied preparations efficiently inhibited the RNA-synthesis in both cases. The inhibitors modified only in 3'-ribose position did not express specificity to any of RNA-polymerases tested, while some analogues having two modification in the molecule demonstrated the selective inhibition of RNA-synthesis directed by the influenza A viral RNA-polymerase [ara GTP (3'NH2), RvTP (3'N3')].  相似文献   

3.
4.
Modified Tyr-tRNATyr and Phe-tRNAPhe species from yeast having the aminoacyl residue bound specifically to the 2' and 3' position of the terminal adenosine, respectively, were investigated for their ability to form ternary complexes with Escherichia coli elongation factor Tu and GTP. Both Tyr-tRNATyr-CpCpA (2'd) and Tyr-tRNATyr-CpCpA(3' d) derivatives which are esterified with the amino acid on the 3' and 2' position respectively and which lack the vicinal hydroxyl were able to form ternary complexes. The stability of these ternary complexes was lower than in the case of native Tyr-tRNATyr-CpCpA. Tyr-tRNATyr-CpCpA(3' d) having the amino acid attached to the 2' position interacted considerably more strongly with EF-Tu - GTP than Tyr-tRNATyr-CpCpA(2' d). Ternary complex formation was observed with neither Phe-tRNAPhe-CpCpA(2'NH2) nor Phe-tRNAPhe-CpCpA(3'NH2). It is concluded that 2' as well as 3' isomers of native aminoacyl-tRNA can be utilized for ternary complex formation but in a following step a uniform 2'-aminoacyl-tRNA - EF-Tu - GTP complex is formed. Although the free vicinal hydroxyl group of the terminal adenosine is not absolutely required, replacement of the ester linkage through with the amino acid is attached to tRNA by an amide linkage leads to loss of ability to interact with elongation factor Tu.  相似文献   

5.
Bis-Netropsins with the C-ends of their netropsin fragments tethered via tetra- or pentamethylene linkers and with Gly or L-Lys-Gly residues on their N-ends were synthesized. The footprinting technique was used to study the specificity of bis-netropsin binding to the specially constructed DNA fragments containing various clusters of A.T pairs. It was found that the linker length affects the binding of bis-netropsins, with the tetramethylene linker providing better protection than the pentamethylene linker. It was shown that the newly synthesized bis-netropsins bind tighter to the 5'-A4T(4)-3' sequence, whereas the bis-netropsin with a linker between the netropsin N-ends binds better to 5'-T4A(4)-3' sequences. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 6; see also http://www.maik.ru.  相似文献   

6.
Oligonucleotides bearing biodegradable phosphate protecting groups have been synthesized on a solid support. For this purpose, two dimeric building blocks, viz. 5'-O-(4,4'-dimethoxytrityl)-(R(P),S(P))-O(P)-[2,2-bis(ethoxycarbonyl)-3-(pivaloyloxy)propyl]-P-thiothymidylyl-(3',5')-thymidine 3'-[O-(2-cyanoethyl)-N,N-diisopropylphosphoramidite] (1) and 5'-O-(4,4'-dimethoxytrityl)-(R(P),S(P))-O(P)-[2-cyano-2-(2-phenylethylaminocarbonyl)-3-(pivaloyloxy)propyl]thymidylyl-(3',5')-thymidine 3'-(H-phosphonate) (2), were prepared. Phosphoramidite 1 was incorporated into an phosphorothioate oligothymidylate sequence on a base-labile hydroquinone-O,O'-diacetic acid linker (Q-linker) and on a photolabile 4-alkoxy-5-methoxy-2-nitrobenzyl carbonate linker (11). H-Phosphonate 2 was, in turn, incorporated into an oligothymidylate sequence only on the photolabile linker. Kinetics of the removal of the protecting groups by porcine liver esterase and subsequent retro aldol condensation/phosphate elimination were then studied. While the pro-oligonucleotide that contained only one phosphate protection gave the deprotected phosphorothioate oligonucleotide in a quantitative yield, the enzymatic step was markedly decelerated upon increasing the number of protection groups, and hence chain cleavage started to compete.  相似文献   

7.
Synthesis and antibacterial activity of C6-carbazate ketolides   总被引:1,自引:0,他引:1  
A novel series of ketolides containing heteroaryl groups that are linked to the erythronolide ring via a C6-carbazate functionality has been successfully synthesized. Careful modulation of the heteroaryl groups, the length and degree of saturation of the C6-carbazate linker, and the substituents present on each of the carbazate nitrogens led to compounds with potent activity against key bacterial respiratory pathogens. The best analogs of this series had in vitro and in vivo (sc dosing) profiles that were comparable to telithromycin.  相似文献   

8.
Synthesis of 3'-3'-linked oligonucleotides branched by a pentaerythritol linker is described. The branched oligonucleotides were synthesized on a DNA/RNA synthesizer using a controlled pore glass (CPG) with a pentaerythritol linker carrying 4,4'-dimethoxytrityl (DMTr) and levulinyl (Lev) groups. The stability of the triplexes between the branched oligonucleotides and the target single-stranded DNA or RNA was studied by thermal denaturation. The oligonucleotides with the pentaerythritol linker formed thermally stable triplexes with the single-stranded DNA and RNA. Furthermore, the branched oligonucleotides containing 2'-O-methylribonucleosides, especially the oligonucleotide composed of 2'-deoxyribonucleosides and 2'-O-methylribonucleosides, stabilized the triplexes with the single-stranded DNA or RNA. Thus, the branched oligonucleotide containing 2'-O-methylribonucleosides may be a candidate for a novel antisense molecule by the triplex formation.  相似文献   

9.
Since the discovery of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2',3'-didehydro-2',3'dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

10.
Synthetic analogs of (2'-5')oligo(A) were assayed for endonuclease activation in cell extracts and for inhibition of protein synthesis in intact cells. The analogs are triadenylates: (i) methylated in the terminal 3'-OH; (ii) methylated at all three 3'-OH groups; (iii) with different numbers of phosphate groups at the 5' terminus or with a methylene group between the beta- and gamma-phosphate. Only 5'-phosphorylated monomethylated analogs activate an endonuclease in cell extracts and are powerful inhibitors of protein synthesis in intact cells. The analogs with only one 5'-terminal phosphate may require addition of another phosphate for activity since the kinase inhibitor 2-aminopurine prevents endonuclease activation by this compound but not by the di- and triphosphate-terminated triadenylates. These results suggest that two terminal phosphates and one or two free 3'-OH are required for endonuclease activation and inhibition of protein synthesis. The monomethylated analogs are more active than (2'-5')pppA3 because of their resistance to degradation by cellular enzymes. Accordingly, the monomethylated analogs cause a prolonged inhibition of protein synthesis in human fibroblasts treated with nanomolar concentrations of these compounds.  相似文献   

11.
This paper described synthesis of 2',5'-oligoadenylate (2-5A) analogs containing the purine acyclonucleoside, 9-[(2'S,3'R)-2',3',4'-trihydroxybutyl]adenine (2). The ability of the analogs to activate recombinant human RNase L was evaluated using 5'-32P-r(C11U2C7)-3' as a substrate. The EC50 value (the concentration of the 2-5A required to cleave half of the RNA) of the parent 2-5A tetramer 13 was 1.0 nM, whereas those of the analog 14 incorporating 2 at the second position from the 5'-end and the analog 15 incorporating 2 at the third position from the 5'-end were 9.0 and 1.7 nM, respectively. The analogs 14 and 15 were only 9- and 1.7-fold less potent than the parent 2-5A 13 itself, in RNase L activation ability. Furthermore, the oligodeoxynucleotide containing 2 was more resistant to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) than the unmodified oligodeoxynucleotide. Thus, incorporation of an acyclonucleoside into 2-5A may be useful for developing an antiviral agent based on the 2-5A system.  相似文献   

12.
Solid-phase synthetic methodology was developed for the preparation of peptide-based affinity labels. The initial peptides synthesized were dynorphin A (Dyn A) analogs [Phe(p-X)4,D-Pro10]Dyn A(1-11)NH2 containing isothiocyanate (X=-N=C=S) and bromoacetamide (X=-NHCOCH2Br) groups. The peptides were assembled on solid supports using Fmoc-protected amino acids, and the side chain amine to be functionalized, Phe(p-NH2), was protected by the Alloc (allyloxycarbonyl) group. Following removal of the Alloc group by palladium(O), the reactive isothiocyanate and bromoacetamide functionalities were successfully introduced while the peptides were still attached to the resin. Synthesis of these peptides was carried out on polystyrene (PS) and polyethylene glycol-polystyrene (PEG-PS) resins containing the PAL [peptide amide linker, 5-(4-Fmoc-aminomethyl-3,5-dimethoxyphenoxy)valeric acid] linker. Both the rate of Alloc deprotection and the purity of the crude affinity-labeled peptides obtained were found to be dependent on the resin used for peptide assembly.  相似文献   

13.
A gramicidin S (GS) analog ([D-Dpr4,4'] GS) containing D-alpha,beta-diaminopropionic acid (D-Dpr) in place of D-Phe at 4,4' positions was derived from [L-Orn(delta-formyl)2,2', D-Dpr(beta-Z)4,4']GS, which was synthesized by conventional method in solution. An analog [delta Ala4,4']GS was synthesized from [L-Orn(delta-Boc)2,2', D-Dpr4,4']GS through Hofmann degradation of the D-Dpr residues. Antimicrobial activities of these analogs were tested; [D-Dpr(beta-Z)4,4']GS and [delta Ala4,4']GS showed high antimicrobial activities against Gram-positive bacteria. [D-Dpr4,4']-GS showed an appreciable activity against Gram-negative bacteria such as Escherichia coli. Four semigramicidin S (semiGS) analogs such as [delta Ala4]semiGS were synthesized; these had no antimicrobial activity. Analogs containing delta Ala residues were hydrogenated, and the formation of L-Ala or D-Ala residues was determined. The delta Ala residues in [delta Ala4,4'] GS were reduced to DL-Ala, and delta Ala in [delta Ala4]semiGS mostly to L-Ala. The relationships of the antimicrobial activity, CD curves and asymmetric hydrogenation to the structure were discussed.  相似文献   

14.
Synthesis and antiviral activity of several new 8-substituted carbocyclic analogs of D-2',3'-dideoxyadenosine are described. The new 8-substituted analogs were synthesized via lithiation of carbocyclic 2',3'-dideoxyadenosine followed by quenching with electrophiles. This methodology allows for a divergent synthesis of a variety of 8-substituted analogs from carbocyclic 2',3'-dideoxyadenosine in high yields. 8-Methyl and 8-halogenated carbocyclic 2',3'-dideoxyadenosine analogs showed 6-25 fold more activity against hepatitis B virus than the unsubstituted carbocyclic D-2',3'-dideoxyadenosine.  相似文献   

15.
The antibiotic gramicidin S (GS) has the structure of cyclo (-L-Val1-L-Orn2-L-Leu3-D-Phe4-L-Pro5-L-Val1'-L-Orn2'-L-Leu3'-D-Phe4'-L-Pro5'-) and is basic in character. Five GS analogs including [Gly1,1']-GS and the neutral [L-Hnv2,2']-GS (Hnv represents delta-hydroxynorvaline) were synthesized by the solid-phase method to evaluate the role of L-Val1,1' and L-Orn2,2' residues in GS. The hybrid analogs [( Gly1]-GS and [L-Hnv2]-GS) and [D-Tyr4,4']-GS showed high antibacterial activities, whereas [Gly1,1']-GS and [L-Hnv2,2']-GS possessed no activity. Inhibitory effects by these analogs for the adsorption of 14C-labeled GS on cells of bacteria sensitive to GS were determined. The structure-activity relationship of GS is discussed on the basis of the results on these GS analogs.  相似文献   

16.
17.
Four diastereomeric analogs of oxytocin containing substituted phenylalanine in position 2 were synthesized. This modified phenylalanine side chain contained one methyl group attached to the beta-carbon and the second one at the 2' position of the aromatic ring. All analogs were found to be inhibitors of uterotonic activity of oxytocin with pA2 values ranging from 6.0 to 8.3; the most potent one (pA2 = 8.3) contained dimethylphenylalanine of the D-erythro configuration.  相似文献   

18.
A variety of 2-5A (px(A2'p)nA; x = 2 or 3, n greater than or equal to 2) analogs were assayed for their abilities to activate murine 2-5A-dependent RNase (subsequently "the nuclease") using a recently developed method. This technique consists of immobilizing and partially purifying the nuclease using core-cellulose [A2'p)3A-cellulose) and then monitoring the breakdown of poly(U)-3'-[32P]Cp into acid-soluble fragments. Several 5'-adenosinecapped analogs of 2-5A (containing a tetra-, tri-, or diphosphate) were analyzed, and it was found that reducing the number of phosphoryl groups between the 5' to 5'-diadenosine linkages resulted in a progressive loss of activity. Because A5' pppp(A2'p)3A was a potent activator of the nuclease yet stable during the assay these results suggested that a free 5'-phosphoryl group may not be required for the activation of the nuclease. A number of 8-bromoadenosine-substituted analogs of 2-5A were also studied. Curiously, the brominations decreased the activities of the 5'-di- and triphosphorylated molecules while substantially increasing the activities of the 5'-monophosphorylated species. The results indicated that a tri- or diphosphate moiety on the 5'-end of 2-5A or the presence of ATP is not absolutely required for the nuclease to be active. Furthermore, the ATP analog, beta, gamma-methylene ATP, did not inhibit the activity of the nuclease. Finally, a 3',5'-phosphodiester linkage isomer of 2-5A and a 3'-deoxy (cordycepin) analog of 2-5A were tested, and both were found to be completely without activity.  相似文献   

19.
As part of a continuing search for potential anticancer drug candidates in the 2-phenyl-4-quinolone series, 3',6-substituted 2-phenyl-4-quinolone-3-carboxylic acid derivatives and their salts were synthesized and evaluated. Preliminary screening showed that carboxylic acid analogs containing a m-fluoro substituted 2-phenyl group displayed the highest in vitro anticancer activity. Activity decreased significantly if a chlorine or methoxy group replaced the fluorine atom. 3'-Fluoro-6-methoxy-2-phenyl-4-quinolone-3-carboxylic acid (68) had the highest in vitro cytotoxic activity among all tested carboxylic acid derivatives and their salts. The mechanism of action may be similar, but not identical, to that of tubulin binding drugs, such as navelbine and taxol. Compound 68 merits further investigation as a novel hydrophilic antimitotic agent.  相似文献   

20.
Two novel C-linked oxadiazole carboxamide nucleosides 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-5-carboxamide (1) and 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-3-carboxamide (2) were successfully synthesized and characterized by X-ray crystallography. The crystallographic analysis shows that both unnatural nucleoside analogs 1 and 2 adapt the C2'-endo ("south") conformation. The orientation of the oxadiazole carboxamide nucleobase moiety was determined as anti (conformer A) and high anti (conformer B) in the case of the nucleoside analog 1 whereas the syn conformation is adapted by the unnatural nucleoside 2. Furthermore, nucleoside analogs 1 and 2 were converted with high efficiency to corresponding nucleoside triphosphates through the combination chemo-enzymatic approach. Oxadiazole carboxamide deoxyribonucleoside analogs represent valuable tools to study DNA polymerase recognition, fidelity of nucleotide incorporation, and extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号