首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was the characterization of soil samples of a closed unlined landfill located northwest of Thessaloniki, North Greece, in relation to heavy metals values. Samples were obtained by drilling in different depths (2.5-17.5m). Then they were analyzed by atomic absorption spectrophotometry for Cd, Cr, Cu, Ni, Pb and Zn investigation. The chemical analysis showed that the metal values varied over a wide range: from 0.50 to 18.75mg/kg for Cd, 3.88-171.88mg/kg for Cr, 8.13-356.25mg/kg for Cu, 5.63-63.75mg/kg for Ni, 2.50-92.50mg/kg for Pb and 6.38-343.75mg/kg for Zn. The highest values found in three of the six drillings, in depths over 2.5m. Although the area is heavily industrialized, the presented results indicated that local industries have not constituted an extensive metal pollution source for the site. Finally, after all necessary preparatory operations of site cleaning and flattening, surface planting selected and applied as a phytoremediation rehabilitation method of the site.  相似文献   

2.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

3.
山东省部分水岸带土壤重金属含量及污染评价   总被引:23,自引:0,他引:23  
为了解山东省水岸带土壤重金属的含量特征和污染状况,于2010年9月—10月采集了39个水岸带土壤样品,分析了土壤中Cr、Co、Ni、Cu、Zn、Cd、Pb和Hg的含量以及土壤的pH值、粒度和有机质,采用单因子指数法、综合指数法和潜在生态危害指数法对水岸带土壤重金属污染进行了评价,并利用相关分析和聚类分析对其来源进行了初步的解析。结果表明:水岸带土壤的pH值为5.67—8.66,主要呈碱性;有机质的平均含量为9.39 g/kg,土壤粒度主要以砂粒和粉粒为主,其平均体积百分比分别为50.33%和38.48%,平均粒径为89.69 μm;Cr、Co、Ni、Cu、Zn、Cd、Pb和Hg的平均含量为53.03 mg/kg、10.33 mg/kg、24.96 mg/kg、18.38 mg/kg、56.13 mg/kg、0.142 mg/kg、22.48 mg/kg和0.020 mg/kg。各水岸带土壤重金属的含量均符合《土壤环境质量标准》(GB15618-1995)二级标准。以山东省土壤元素背景值为评价标准,水岸带土壤重金属总体表现为轻度污染和轻微生态风险,其中Cd和Hg是主要的污染因子,其对潜在生态危害指数的平均贡献率分别为46.8% 和33.6%。洙赵新河、廖河、门楼水库和东平湖水岸带土壤重金属污染及潜在生态危害明显高于其他水源地。源解析的结果表明:水岸带土壤重金属的含量受自然源和人为源的双重影响,人为源主要包括地表径流、工业废气、垃圾和交通运输等。  相似文献   

4.
Concentration and distribution of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in 26 soil profiles (n = 78) of northern Kentucky in response to environmental concerns about increasing anthropogenic inputs in a fast-paced urbanizing area. The selected sites represent alluvial, glacial till or residual soils that have not received any biosolid- or industrial-waste applications. Mean concentrations of Zn (53.8 mg kg?1) and Ni (25.9 mg kg?1) were the highest in the soil profile, whereas Cd (0.21 mg kg?1) was present only in trace amounts. All metals were within the low to middle range of baseline concentrations reported for US soils, suggesting minimal anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb concentrations were unaffected throughout the soil profile. Alluvial soils had the highest overall metal accumulations, particularly in surface soil horizons, indicating potential metal enrichment through depositional processes. The presence of a fragipan horizon or depth to bedrock did not significantly affect metal retention. Single correlation and multiple regression analyses indicated OM and pH as the most influential soil parameters for metal retention, followed by cation exchange capacity (CEC) and CEC/clay. Single correlations among metals suggested strong covariance of Zn with most metals throughout the soil profile, but weaker for Pb and Ni.  相似文献   

5.
在综合考虑深圳市城市功能区分异特征的基础上,进行全市表层土壤系统采样,全面监测土壤表层8种重金属元素污染状况,分析不同重金属元素含量的统计学特征,探讨不同城市功能区对土壤表层重金属污染的影响,采用内梅罗指数和潜在生态危害指数评估不同重金属元素和不同城市功能区的生态风险水平,分别进行基于两种方法的全市重金属污染生态风险分区。结果表明: 1)深圳市土壤表层的Mn、Ni、Cr和Pb 4种元素受人为活动的影响程度较低,Cd、Zn、Cu和As 4类元素受人为活动影响较大。地表环境约束因素背景下的高强度城市化和工业化过程,是各种重金属污染区域分异和功能区分异的决定性因素。2)深圳市土壤重金属污染风险较高的重金属元素为Cd、Zn、Cu和Pb,特别是Pb污染问题尤为突出,必须加强管控工作。深圳市总体土壤表层重金属污染风险水平高于国内相关城市,需要引起足够重视。3)内梅罗指数法和潜在生态危害指数法的侧重点不同,在单一重金属元素风险判断、不同城市功能区生态风险的总体评价,以及市域土壤重金属污染生态风险分级评价方面结果差异较大,组合使用效果更好。  相似文献   

6.
A total of 30 surface soil samples were collected from the typical polluted area of Bengbu, Anhui province, Eastern China. The content characteristics, source identification, and risk assessment of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) were studied based on the field investigation, sampling, indoor test, and statistical analysis. Results showed that the concentrations of Cd, Cu, Mn, Ni, Pb, and Zn showed different spatial variation and ranged from 0.48 to 1.84, 12.78 to 239.07, 287.14 to 491.96, 15.29 to 52.99, 13.28 to 68.82, and 28.83 to 184.79 mg/kg, respectively. Besides Mn, the contents of other metals have exceeded the local background value to a certain extent, and the higher concentrations recorded were found in the east of Bali channel. Source analyses indicated that Cd, Cu, Pb, and Zn were attributed to industrial emissions, vehicle exhaust pollution, and phosphate uses in agriculture, whereas Ni and Mn were mainly of natural origin. Among the six heavy metals, Cd posed the highest ecological risk with the proportion of 3.3% at a considerable level, 36.7% at a high level, and 60% at a very high level, Cu presented a low-to-moderate ecological risk, while others presented a relatively low risk in surface soils, suggesting that Cd and Cu, especially for Cd, should draw environmental concern.  相似文献   

7.
Disposal of sewage water in cultivated soils often containing considerable amount of potentially toxic metals such as Cu, Zn, Ni, Cd, Pb and Cr can be beneficial or harmful to plant growth, rhizobial survival, nodulation and nitrogen fixation. Soil samples from 14 such locations were collected. Symbiotic effectivity of host-Rhizobium leguminosarum symbiosis in these soils was assessed. The total metal contents of Cd, Cu, Zn and Ni in all the 14 samples collected from farmer's fields receiving sewage water ranged between 1.3 and 6.7, 55.8-353.2, 356.0-1028.0 and 90.0-199.7 mg kg(-1) of soil, respectively. In Rohtak 1 soil, levels of Cd, Cu and Zn were highest while Ni was highest in Sonipat 2 soil. The content of available Cd, Cu, Zn and Ni in these soils ranged from 1.0-29.3; 6.2-47.0; 2.4-13.5, respectively, and was 2-9 percent of their total metal contents. All the N2 fixing parameters in pea and Egyptian clover were adversely affected by the presence of heavy metals. Available Cd and Cu contents significantly affected the N contents of pea and Egyptian clover plants, whereas Ni contents were negatively correlated with the plant biomass of pea and Egyptian clover.  相似文献   

8.
Agricultural soil irrigated with industrial wastewater (more than two decades) analysed for heavy metals revealed high levels of Fe, Cr, Cu, Zn, Ni and Cd. Out of a total of 40 bacterial isolates obtained from these soils, 17 belonged to the family enterobacteriaceae and 10 were Pseudomonas spp. A maximum MIC of 200 for Cd, 400 for Zn and Cu, 800 for Ni, and 1600 microg/ml for Pb was observed. Biosorption of Ni and Cd studies over a range of metal ion concentrations with Escherichia coli WS11 both in single and bi-metal systems showed that the adsorption of Cd and Ni was dependent on the concentrations and followed the Freundlich adsorption isotherm. The biosorption of Ni increased from 6.96 to 55.31 mg/g of cells, and Cd from 4.96 to 45.37 mg/g of cells at a concentration ranging from 50 to 400 microg/ml after 2h of incubation in a single metal solution. A further increase in incubation time had no significant effect on the biosorption of metals.  相似文献   

9.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

10.
Abstract

Heavy metals in vegetables are of great concern worldwide due to their potential bioaccumulation in human. This review-based study researched the concentrations of heavy metals in vegetables from all provinces of China between 2004 and 2018, and assessed the health risk for the residents. The results displayed the highest Pb, Cd, Cu, and Zn concentrations in vegetables were 0.192?mg/kg (west area), 0.071?mg/kg (central area), 3.961?mg/kg (central area), and 10.545?mg/kg (central area), which were lower than the maximum allowable concentration. In the national scale, the weighted average level of heavy metals in vegetables was found to be in the order of Zn?>?Cu?>?Pb?>?Cd. The hazard index (HI) of each province showed that beside Anhui and Hunan province, residents in other provinces of China faced a low high risk of Pb, Cd, Cu, and Zn. However, people consuming vegetables faced a high risk of Pb, Cd, Cu, and Zn in Anhui and Hunan provinces. This research may provide insight into heavy metal accumulation in vegetables and forecast to residents to cope with these problems for improved human health.  相似文献   

11.
To identify sources of heavy metal(loid) (HM) contamination in agricultural soils of Huzhou, surface soil samples were sampled from 89 different agricultural regions in 2012. Concentrations of heavy metal(loid)s, along with pH, total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM), were determined. Ecological risk was then assessed using a modified Hakanson ecological risk index, and the sources of contamination were determined using principal component analysis (PCA). Mean concentrations of heavy metal(loid)s were 10.26, 23.21, 83.75, 22.81, 0.25, 61.86, 33.03, and 0.15 mg kg?1 for As, Cu, Zn, Ni, Cd, Cr, Pb, and Hg, respectively. Cu, Zn, Ni, Cr, Cd, Hg, and Pb were correlated positively with TP and there were obvious positive correlations among Cu, Zn, Ni, Cr, and Cd. Risk index (RI) values varied from 39 to 1246 with a mean value of 137. Enrichment of Pb, Zn, Cu, and especially Cd can be attributed to excessive use of nitrogen and phosphorus fertilizers containing heavy metals, as well to surface irrigation and natural soil formation. While the ecological risk of most agricultural soils in Huzhou is low, it is recommended that the use of phosphate and nitrogen fertilizers be restricted and production technology be improved to reduce the heavy metal(loid) concentrations. Results suggest that the Chinese environmental quality standard for soil should be revised to better address heavy metal(loid) contamination.  相似文献   

12.
This research aims at quantifying the concentrations of heavy metals within the home environment in Amman, the capital city of Jordan, and to compare the total concentrations of indoor dusts to that of exterior dusts and soils. Housedust samples were collected from different zones of Amman. Street dust samples and garden soil samples were collected in the immediate vicinity within 10–50 m of each residence. The geometric mean concentrations of metals in the household dust were Pb, 169 mg/kg; Cd, 2.92 mg/kg; Zn, 1985 mg/kg; Cu, 133 mg/kg; Cr, 66 mg/kg; Co, 21 mg/kg; Ni, 31 mg/kg; Mn, 284 mg/kg; Be, 3.0 mg/kg; Ba, 43 mg/kg; B, 697 mg/kg and Al, 1441 mg/kg. Comparisons of household dust, garden soil and street dust were based on the same particle size fraction. Results showed housedust samples to contain higher concentrations for Pb, Zn, Cr, Ni, Cd, Cu and B, than either street dust or garden soil samples. However, the differences between Pb and Cr levels in the three different sample categories were insignificant. Enrichment factor calculations and the enrichment factor ratios indicated that patterns of enrichment of indoor dust differ from that of exterior dusts.  相似文献   

13.
Soil heavy metal contamination is a major environmental concern, and health risk associated with heavy metals is not fully explored. A combination of spatial analysis and Monte Carlo simulation was successfully used to identify the possible sources and health risk of cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), and copper (Cu) in soils collected from a rapidly developing region of China. It was found that mean concentrations of Cd (0.17 mg/kg ), As (8.74 mg/kg ), Hg (0.15 mg/kg ), Pb (27.28 mg/kg ), and Cu (33.32 mg/kg ) were greater than the soil background values. Accumulation and spatial variability of heavy metals were significantly affected by anthropogenic activities and soil properties. The risk assessment indicated that non-carcinogenic risk was not significant. However, 95% of the total cumulative carcinogenic risk of children was greater than 1E-05, implying high potential carcinogenic risk with As and Pb representing the major contributors. Ingestion of heavy metals in the soils was the main exposure pathway compared with the inhalation and the dermal exposure. Concentration of heavy metals in the soils, particulate emission factor, and dermal exposure ratio were the major parameters affecting health risk. This study highlights the importance of assessment of soil direct exposure health risk in studying heavy metal exposures.  相似文献   

14.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

15.
In recent years, heavy metal contamination in suburban vegetable soils calls for significant concerns due to the rapid urbanization and industrialization. In present study, 110 suburban vegetable soil samples from Yanbian, Northeast China, were collected. Concentration characteristics, pollution level, health risk, and source identification were evaluated by using different quantitative indices. Concentrations of Pb, Cr, Cu, Ni, Zn, Cd, and As in suburban soils were measured. Mean concentrations of Pb, Cr, Cu, Ni, Zn Cd, and As were 34.9 ± 10.5, 73.5 ± 44.4, 29.6 ± 19.4, 23.4 ± 12.0, 88.5 ± 26.7, 0.16 ± 0.16, and 9.24 ± 3.79 mg/kg, which were showed significantly higher than corresponding background values of Jilin province, respectively. The soils were moderately heavy polluted by Cu and Cd based on the results of geo-accumulated index and pollution indices. The pollution load index indicated that almost all of the study area were middle or heavy polluted, especially in Antu County and Helong City. Children in Yanbian may pose non-carcinogenic and carcinogenic risks with the major exposure pathway of ingestion. Principle component analysis results suggested that Pb, Cu, Zn, and Cd were mainly associated with agricultural activities, Ni and Cr were defined as combined source (lithogenic and anthropogenic), and As was tended to be from excessive application of pesticides and industrial activities.  相似文献   

16.
珠江三角洲马尾松年轮重金属含量年代变化   总被引:6,自引:0,他引:6  
采用树木年轮化学分析手段,探讨了肇庆鼎湖山(相对清洁区)和南海西樵山(污染区)马尾松(Pinus massonianaL.)不同时期木质部6种重金属(Cu、Zn、Ni、Cd、Cr和Pb)含量的年代变化。结果表明:西樵山马尾松林地表层土壤Cu、Zn、Cd和Pb含量均超过其在广东省表层土壤环境背景值,鼎湖山马尾松林地表层土壤除Cd外其余重金属含量在背景值范围内;鼎湖山和西樵山马尾松木质部中Cu、Zn、Cr和Pb含量均呈现从心材到边材上升的分布格局,反映了珠江三角洲环境中可供植物利用的重金属在过去有了增加。Cu、Zn、Ni,特别是Cr和Pb的最大含量出现在1990年后形成的木质部中,两地环境(土壤和大气)中重金属含量增加是导致马尾松木质部重金属含量上升的主要原因;在相同时期形成的木质部中,西樵山马尾松木质部Cu、Cr和Pb的含量大于鼎湖山,Zn、Ni和Cd含量则小于鼎湖山,这与环境重金属含量差异有关,也与马尾松对不同重金属的富集能力有关。马尾松年轮化学分析的结果能够提供珠三角地区重金属的历史变化信息。  相似文献   

17.
New guidelines for using biosolids in UK agriculture favour the use of enhanced treated biosolids, such as dried and composted cakes, due to concerns about the potential for transfer of pathogens into the food chain. However, there is a need to ensure that their use is environmentally acceptable and does not increase the risk to potable water supplies or the food chain from other contaminants such as heavy metals and xenobiotic organic chemicals. The objective of this study was to determine whether the use of composted and dried mesophilic anaerobically digested dewatered (MADD) biosolids would increase the risk of heavy metal leaching from cultivated horizons when compared to more conventionally used MADD cake. Three biosolids (MADD sewage sludge cake - fresh, dried and composted) were mixed with a sand (typic quartzipsamments, %OM = 3.0, pH = 6.5) or a sandy loam (typic hapludalf, %OM = 4.8, pH = 7.6) at an application rate equivalent to 250 kg N/ha/y resulting in loadings of approximately Zn: 6 microg, Cu: 2 microg, Pb: 5 microg and Ni: 0.2 microg/g of soil dry weight basis. These amended soils were repacked into columns (0.4 m by 0.1 m internal diameter) and leaching of Zn, Cu, Pb and Ni was investigated following application of two 24 h simulated rainfall events of 4.5 mm/h. Water balance data and the use of conservative tracers (Cl- and Br ) showed that the hydrological regimes of each core were comparable and, thus, unlikely to account for differences in metal leaching observed. Although no significant difference (P = 0.05) was observed between biosolid amended and control soils, those amended with composted sludge consistently gave higher loss of all metals than did the control soils. Total losses of metals from compost amended soil over the two rainfall events were in the ranges, Zn:20.5-58.2, Cu:9.0-30.5, Pb:24.2-51.2 and Ni:16.0-39.8 microg metal/kg amended soil, compared with Zn:16.4-41.1, Cu:6.2-25.3, Pb:16.9-41.7, and Ni:3.7-25.4 microg metal/kg soil from the control soils. Losses of Zn, Cu, Pb and Ni from fresh MADD cake amended soils (19.8-41.3, 3.2-25.8, 21.6-51.6 and 7.6-36.5 microg metal/kg amended soil, respectively) and from dry MADD cake amended soils (10.7-36.7, 1.8-23.8, 21.2-51.2 and 6.8-39.2 microg metal/kg amended soil, respectively) were similar to the controls. Generally, quantities of metals leached followed the order Zn = Pb > Cu > Ni, which was consistent with the levels of metals in the original sludge/soil mixtures. These results suggest that composting or drying MADD biosolids is unlikely to increase the risk of groundwater contamination when compared to the use of MADD cake; therefore, the changes in UK sludge use in agriculture guidelines are satisfactory in this respect.  相似文献   

18.
A study on identification of hotspots, spatial patterns, and risk evaluation of heavy metals in urban soils of Malayer city (Iran) was carried out. Fifty-nine composite surface soil samples were collected from six different land uses (urban parks, streets, and squares, boulevards, residential and agricultural areas) in Malayer city, and the total heavy metals were measured by atomic absorption spectroscopy. Average concentrations of Cd, Pb, Cu, and Zn, As, Cd, and Pb were 0.66, 15.51, 12.25, and 96.8 mg/kg, respectively. Among the six land uses, heavy metal contamination was heavier for street, while low contamination could be found for residential and urban parks. The spatial distribution of Pb in surface soil was similar to those of Cd, and Cu was similar to those of Zn with decreasing values from the central areas to the suburb. Also, there were several hotspots for studied heavy metals that Cd and Pb were mainly occurred in locations of heavy traffic in the city center and Cu and Zn in the west and northwestern in the city. The calculated result of risk evaluation showed that much of the city suffered from moderate to severe pollution by four of these heavy metals.  相似文献   

19.
The heavy metal pollution of sediment in the Nhue River, which receives wastewater from the To Lich and Kim Nguu River system, was investigated together with the effects of use of this water for irrigation of the surrounding farmland. Eighty soil samples and 40 sediment samples were collected from six locations in the Nhue River and two locations in the To Lich River for chemical and physical analyses. The results showed that the sediments in the Nhue River are heavily polluted by metals (71–420 mg/kg for Cu, 77–433 mg/kg for Pb, 150–350 mg/kg for Zn, 0.7–8.7 mg/kg for Cd, 80– 583 mg/kg for Cr, and 32–70 mg/kg for Ni). There were positive correlations between heavy metal concentration and both clay and organic matter contents in the sediment samples. The concentrations of all metals in soil samples were much higher than the background levels in the farmland, Cd, Cu, and Pb, exceeding Vietnamese standards for agricultural grounds.  相似文献   

20.
Heavy metals in the site received industrial effluents were investigated to assess the pollution levels, distribution of metal among solid-phase fractions and possible metal sources. The soil samples at different depths of 0–5, 5–25 and 25–50 cm were collected and analyzed for Fe, Mn, Cd, Zn, Cu, Ni and Pb. Among all metals, Cd content was not detected in all soil samples. The average contents of Pb and Zn are higher than the corresponding values of common range in earth crust. Meanwhile, the maximum contents of Cu and Zn are higher than those of Dutch optimum value but lower that the Dutch protection act target value. The maximum contents of Cu, Pb and Zn are higher than the average shale value. The most investigated heavy metals are mostly found in the potentially labile pool (>50.0%) including metal bound to carbonate, Fe/Mn oxides, or organically fractions. Enrichment factor (EF) in combination with multivariate analysis including principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggest that Mn and Ni associated with Fe in the soil samples were primarily originated from lithogenic sources. Pb was largely derived only from anthropogenic source, while Cu and Zn in the soil samples were controlled by the mixed natural and anthropogenic sources. These results suggest that discharging the industrial effluents into dumping site increased pollution level of Pb, Zn and Cu as well as enhanced their potentially labile pool that may be responsible for occurring potential toxic impacts on environmental quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号