首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A method for recording O2 concentrations in nonconducting organic media with the Clark oxygen electrode was developed. Spontaneous oxidation of Na2S2O4 and the enzymatic reduction of NaBO3 or H2O2 by bovine liver catalase trapped in hydrated micelles of dioctylsulfosuccinate (AOT)/toluene were used as model systems. O2 titration with the above systems showed that air-saturated 1.6 M H2O/0.2 M AOT/toluene media contain seven times more O2 (1.4 mM) than aqueous solutions (0.2 mM). The measured Km values of catalase for NaBO3 and H2O2 in organic media were Kmov = 15 and 17 mM, respectively, whereas in aqueous buffer the values were 45 and 54 mM. In the toluene media, catalase activity increased with the W0 (H2O/AOT molar ratio) of the micellar preparation, reaching maximal activity at W0 = 10-12; under this condition, the catalytic center activity (Kp) of H2O2 was 7 x 10(6) min-1, similar to that obtained in the aqueous buffer (H2O2 = 7 x 10(6) min-1). It was found that the optimal pH for catalase in toluene media (pH 8.0) was shifted 1.0 unit compared to that in the aqueous buffer (pH 7.0). On the other hand, catalase was severely inhibited by NaN3 in both media. Thus, polarography based on the Clark oxygen electrode seems to be an easy, rapid, and sensitive technique for studying enzyme reactions consuming or evolving O2 in apolar media.  相似文献   

2.
Iron loss in vitro by the iron scavenger bovine lactoferrin was investigated in acidic media in the presence of three different monoanions (NO(3)(-), Cl(-) and Br(-)) and one dianion (SO(4)(2-)). Holo and monoferric C-site lactoferrins lose iron in acidic media (pH< or =3.5) by a four-step mechanism. The first two steps describe modifications in the conformation affecting the whole protein, which occur also with apolactoferrin. These two processes are independent of iron load and are followed by a third step consisting of the gain of two protons. This third step is kinetically controlled by the interaction with two Cl(-), Br(-) and NO(3)(-) or one SO(4)(2-). In the fourth step, iron loss is under the kinetic control of a slow gain of two protons; third-order rate-constants k(2), 4.3(+/-0.2)x10(3), 3.4(+/-0.5)x10(3), 3.3(+/-0.5)x10(3) and 1.5(+/-0.5)x10(3) M(-2) s(-1) when the protein is in interaction with SO(4)(2-), NO(3)(-), Cl(-) or Br(-), respectively. This step is accompanied by the loss of the interaction with the anions; equilibrium constant K(2), 20+/-5 mM, 1.0(+/-0.2)x10(-1), 1.5(+/-0.5)x10(-1) and 1.0(+/-0.3)x10(-1) M(2), for SO(4)(-), NO(3)(-), Cl(-) and Br(-), respectively. This mechanism is very different from that determined in mildly acidic media at low ionic strength (micro<0.5) for the iron transport proteins, serum transferrin and ovotransferrin, with which no prior change in conformation or interaction with anions is required. These differences may result from the fact that in the transport proteins, the interdomain hydrogen bonds that consolidate the closed conformation of the iron-binding cleft occur between amino acid side-chain residues that can protonate in mildly acidic media. With bovine lactoferrin, most of the interdomain hydrogen bonds involved in the C-site and one of those involved in the N-site occur between amino acid side-chain residues that cannot protonate. The breaking of the interdomain H-bond upon protonation can trigger the opening of the iron cleft, facilitating iron loss in serum transferrin and ovotransferrin. This situation is, however, different in lactoferrin, where iron loss requires a prior change in conformation. This can explain why lactoferrin does not lose its iron load in acidic media and why it is not involved in iron transport in acidic endosomes.  相似文献   

3.
Electrochemical methods were used to activate MnIII and FeIII complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2TMPyP) to cause cleavage of pBR322 DNA and to study their interaction with sonicated calf thymus DNA. Electrochemical reduction of MnIIITMPyP and FeIIITMPyP (at low concentrations) in the presence of O2 was required to activate these complexes. However, FeIIITMPyP at 1 x 10(-6) M produced DNA strand breakage without being electrochemically reduced. At low concentrations, FeIITMPyP was more efficient at cleaving DNA than MnIITMPyP. Reduction of O2 at a platinum electrode also produced some cleavage but to a much smaller extent. The oxidized form of MnIIITMPyP (charge 5+) has higher affinity for sonicated calf thymus (CT) DNA than the reduced form (charge 4+), as determined by the negative shift in E degrees' for the voltammetric wave in the presence of DNA. Both forms of FeIIITMPyP (charge 4+) interact with DNA to about the same extent. Differential pulse voltammetry was used to determine binding constants (K) and binding-site sizes (s) of the interaction of these metalloporphyrins with sonicated CT DNA. The data were analyzed assuming both mobile and static equilibria. MnIIITMPyP binds to DNA (5 mM Tris, 50 mM NaCl, pH 7) with K = 5 (+/- 2) x 10(6) M-1, s = 3 bp (mobile) or K = 3.6 (+/- 0.3) x 10(6) M-1, s = 4 bp (static). FeIIITMPyP at that ionic strength caused DNA precipitation. At higher ionic strength (0.1 M Tris, 0.1 M NaCl, pH 7), FeIIITMPyP associates to DNA with K = 4.4 (+/- 0.2) x 10(4) M-1, s = 5 bp (mobile) or K = 1.9 (+/- 0.1) x 10(4) M-1, s = 6 bp (static).  相似文献   

4.
The effect of oxygen on the radiolysis of tyrosine in aqueous solutions was investigated by using gamma and pulsed electron irradiation. Steady-state radiolysis was reexamined and extended to include the effect of pH and determination of hydrogen peroxide. The loss of tyrosine, G(-Tyr), during irradiation and yields of 3,4-dihydroxyphenylalanine, G(DOPA), and hydrogen peroxide, G(H2O2), are determined in the pH range from 1 to 9. In the whole pH range used G(-Tyr) equals G(DOPA), and a higher G(H2O2) than expected was observed. In slightly acid and neutral media, both G(-Tyr) and G(DOPA) equal the yield of hydroxyl radicals, GOH, formed in the radiolysis of water, while the excess of hydrogen peroxide equals 1/2 GOH. Hence it was concluded that all tyrosine OH-adducts react with oxygen yielding peroxy radicals. In acid and alkaline media all measured yields decrease. This is caused by formation of tyrosine phenoxyl radicals (TyrO), which react with superoxide anion (O2-) and hydroperoxy (HO2) radicals regenerating tyrosine. By using pulse radiolysis K(TyrO + O2) less than or equal to 2 X 10(5) mol-1 dm3 s-1 and k(TyrO + O2-) = (1.7 +/- 0.2) X 10(9) mol-1 dm3 s-1 were determined. On the basis of the results, a reaction mechanism is proposed.  相似文献   

5.
Crystals of K[B(AnErytH(-2)2] x 2 H2O (AnEryt = 1,4-anhydroerythritol) form from aqueous alkaline solutions containing a double molar amount of diol over borate. The spiro-type monoanions are the main borate species in the mother liquors of crystallisation according to 11B and 13C NMR spectroscopy. Ribofuranosides form analogous borate esters using their 1,4-anhydroerythritol core. Crystals of Na[B(Me beta-D-Ribf 2,3H(-2))2] x 2 H2O were grown from alkaline methyl beta-D-ribofuranoside solutions that had attacked boron-containing Duran vessels. NMR spectra show closely resembling borate-ester speciation in solutions of diols with the 1,4-anhydroerythritol core--1,4-anhydroerythritol itself, methyl beta-D-ribofuranoside and guanosine.  相似文献   

6.
Biological effects of ultraviolet A (UVA) irradiation have been ascribed to the photochemical generation of singlet oxygen. Not all effects described in the literature, however, are explicable solely by the generation of singlet oxygen, but rather resemble effects elicited by hydrogen peroxide (H 2 O 2 ). Here, we show that when cells are kept in cell culture media during exposure to UVA, stress kinases, including ERK 1 and ERK 2 as well as Akt (protein kinase B), are activated, whereas there is no or only minor activation when cells are kept in phosphate-buffered saline during irradiation. Indeed, the exposure of cell culture media to UVA (30 J/cm 2 ) results in the generation of significant amounts of H 2 O 2 , with concentrations of about 100 &#119 M. H 2 O 2 concentrations are at least three-fold higher in HEPES-buffered culture media after UVA irradiation. From experiments with solutions of riboflavin, tryptophan or HEPES, as well as combinations thereof, it is concluded that riboflavin mediates the photooxidation of either tryptophan or HEPES, resulting in the generation of H 2 O 2 . Thus, if signaling effects of UVA radiation are to be investigated in cell culture systems, riboflavin and HEPES/tryptophan should be avoided during irradiation because of artificial H 2 O 2 generation. It should be taken into account, however, that in vivo tryptophan and riboflavin might play an important role in the generation of reactive oxygen species by UVA as both substances are abundant in living tissues.  相似文献   

7.
Biological effects of ultraviolet A (UVA) irradiation have been ascribed to the photochemical generation of singlet oxygen. Not all effects described in the literature, however, are explicable solely by the generation of singlet oxygen, but rather resemble effects elicited by hydrogen peroxide (H 2 O 2 ). Here, we show that when cells are kept in cell culture media during exposure to UVA, stress kinases, including ERK 1 and ERK 2 as well as Akt (protein kinase B), are activated, whereas there is no or only minor activation when cells are kept in phosphate-buffered saline during irradiation. Indeed, the exposure of cell culture media to UVA (30 J/cm 2 ) results in the generation of significant amounts of H 2 O 2 , with concentrations of about 100 μM. H 2 O 2 concentrations are at least three-fold higher in HEPES-buffered culture media after UVA irradiation. From experiments with solutions of riboflavin, tryptophan or HEPES, as well as combinations thereof, it is concluded that riboflavin mediates the photooxidation of either tryptophan or HEPES, resulting in the generation of H 2 O 2 . Thus, if signaling effects of UVA radiation are to be investigated in cell culture systems, riboflavin and HEPES/tryptophan should be avoided during irradiation because of artificial H 2 O 2 generation. It should be taken into account, however, that in vivo tryptophan and riboflavin might play an important role in the generation of reactive oxygen species by UVA as both substances are abundant in living tissues.  相似文献   

8.
One-electron oxidation of (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) by the azide radical generates the radical cation (H(4)B(*)(+)) which rapidly deprotonates at physiological pH to give the neutral trihydrobiopterin radical (H(3)B(*)); pK(a) (H(4)B(*)(+) <==> H(3)B(*) + H(+)) = (5.2 +/- 0.1). In the absence of ascorbate both the H(4)B(*)(+) and H(3)B(*) radicals undergo disproportionation to form quinonoid dihydrobiopterin (qH(2)B) and the parent H(4)B with rate constants k(H(4)B(*)(+) + H(4)B(*)(+)) = 6.5 x 10(3) M(-1) s(-1) and k(H(3)B(*) + H(3)B(*)) = 9.3 x 10(4) M(-1) s(-1), respectively. The H(3)B(*) radical is scavenged by ascorbate (AscH(-)) with an estimated rate constant of k(H(3)B(*) + AscH(-)) similar 1.7 x 10(5) M(-1) s(-1). At physiological pH the pterin rapidly scavenges a range of biological oxidants often associated with cellular oxidative stress and nitric oxide synthase (NOS) dysfunction including hydroxyl ((*)OH), nitrogen dioxide (NO(2)(*)), glutathione thiyl (GS(*)), and carbonate (CO(3)(*-)) radicals. Without exception these radicals react appreciably faster with H(4)B than with AscH(-) with k(*OH + H(4)B) = 8.8 x 10(9) M(-1) s(-1), k(NO(2)(*) + H(4)B) = 9.4 x 10(8) M(-1) s(-1), k(CO(3)(*-) + H(4)B) = 4.6 x 10(9) M(-1) s(-1), and k(GS(*) + H(4)B) = 1.1 x 10(9) M(-1) s(-1), respectively. The glutathione disulfide radical anion (GSSG(*-)) rapidly reduces the pterin to the tetrahydrobiopterin radical anion (H(4)B(*-)) with a rate constant of k(GSSG(*-) + H(4)B) similar 4.5 x 10(8) M(-1) s(-1). The results are discussed in the context of the general antioxidant properties of the pterin and the redox role played by H(4)B in NOS catalysis.  相似文献   

9.
Tetrahydrobiopterin ((6R)-5,6,7,8-tetrahydro-L-biopterin (H4biopterin)) is an essential cofactor of nitric-oxide synthases (NOSs), but its role in enzyme function is not known. Binding of the pterin affects the electronic structure of the prosthetic heme group in the oxygenase domain and results in a pronounced stabilization of the active homodimeric structure of the protein. However, these allosteric effects are also produced by the potent pterin antagonist of NOS, 4-amino-H4biopterin, suggesting that the natural cofactor has an additional, as yet unknown catalytic function. Here we show that the 5-methyl analog of H4biopterin, which does not react with O2, is a functionally active pterin cofactor of neuronal NOS. Activation of the H4biopterin-free enzyme occurred in a biphasic manner with half-maximally effective concentrations of approximately 0.2 microM and 10 mM 5-methyl-H4biopterin. Thus, the affinity of the 5-methyl compound was 3 orders of magnitude lower than that of the natural cofactor, allowing the direct demonstration of the functional anticooperativity of the two pterin binding sites of dimeric NOS. In contrast to H4biopterin, which inactivates nitric oxide (NO) through nonenzymatic superoxide formation, up to 1 mM of the 5-methyl derivative did not consume O2 and had no effect on NO steady-state concentrations measured electrochemically with a Clark-type NO electrode. Therefore, reconstitution with 5-methyl-H4biopterin allowed, for the first time, the detection of enzymatic NO formation in the absence of superoxide or NO scavengers. These results unequivocally identify free NO as a NOS product and indicate that reductive O2 activation by the pterin cofactor is not essential to NO biosynthesis.  相似文献   

10.
The Eastern oyster, Crassostrea virginica, lives in shallow coastal waters and experiences many different environmental extremes including hypoxia, hypercapnia and air exposure and many oysters are infected with the protozoan parasite Perkinsus marinus. The effects of these conditions on oyster metabolism, as measured by oxygen uptake, were investigated. Mild hypercapnia had no effect on the ability of oysters to regulate oxygen uptake in hypoxic water, as measured by the B2 coefficient of oxygen regulation. The average B2 was -0.060x10(-3) (+/-0.01x10(-3) S.E.M.; n=20; low and high CO(2) treatments combined) in oysters uninfected with P. marinus and -0.056x10(-3) (+/-0.01x10(-3) S.E.M.; n=16; low and high CO(2) treatments combined) in infected oysters. There was no significant effect of light to moderate infections of P. marinus on oxygen regulation. Nor did the presence of P. marinus have an effect on the rate of oxygen uptake of whole animals in well-aerated water. In well-aerated conditions, oxygen uptake was significantly reduced by moderate hypercapnia in oysters when data from uninfected and infected oysters were combined. Mean oxygen uptake of infected oysters under hypercapnia (pCO(2)=6-8 Torr; pH 7) was 9.10 μmol O(2) g ww(-1) h(-1) +/-0.62 S.E.M. (n=9), significantly different from oxygen uptake under normocapnia (pCO(2) 相似文献   

11.
The protective role of reactive oxygen scavengers against photodamage was studied in isolated photosystem (PS) I submembrane fractions illuminated (2000 microE x m(-2) x s(-1)) for various periods at 4 degrees C. The photochemical activity of the submembrane fractions measured as P700 photooxidation was significantly protected in the presence of histidine or n-propyl gallate. Chlorophyll photobleaching resulting in a decrease of absorbance and fluorescence, and a blue-shift of both absorbance and fluorescence maximum in the red region, was also greatly delayed in the presence of these scavengers. Western blot analysis revealed the light harvesting antenna complexes of PSI, Lhca2 and Lhca1, were more susceptible to strong light when compared to Lhca3 and Lhca4. The reaction-center proteins PsaB, PsaC, and PsaE were most sensitive to strong illumination while other polypeptides were less affected. Addition of histidine or n-propyl gallate lead to significant protection of reaction-center proteins as well as Lhca against strong illumination. Circular dichroism (CD) spectra revealed that the alpha-helix content decreased with increasing period of light exposure, whereas beta-strands, turns, and unordered structure increased. This unfolding was prevented with the addition of histidine or n-propyl gallate even after 10 h of strong illumination. Catalase or superoxide dismutase could not minimize the alteration of PSI photochemical activity and structure due to photodamage. The specific action of histidine and n-propyl gallate indicates that 1O2 was the main form of reactive oxygen species responsible for strong light-induced damage in PSI submembrane fractions.  相似文献   

12.
Carotenoids in light-harvesting proteins and reaction centers increase the overall efficiency of photosynthesis by transferring absorbed light energy to chlorophylls. Peridinin and beta-carotene were isolated from Gonyaulax polyedra in a one-step purification protocol using the preparative circular chromatography (Chromatotron), performed on silica gel under N(2) atmosphere and n-hexane/acetone 8:2 as mobile phase and characterized by extensive (1)H NMR, infrared, and electrospray ionization mass spectrometry analyses. The quenching of singlet molecular oxygen [O(2) ((1)Delta(g))] was evaluated by NIR-emission assays using singlet oxygen generated by sensitization of either perinaphthenone or methylene blue. The NIR-emission assay showed that peridinin quench as singlet oxygen (k(q) = 9.5 x 10(8) M(-1) s(-1)) 5-fold less efficiently than beta-carotene (52 x 10(8) M(-1) s(-1)). A method, based on the use of high-performance liquid chromatography with UV-VIS detection, was then developed for the sensitive quantification of peridinin (55% of total carotenoids) and beta-carotene (4.1% of total carotenoids). Thus, since peridinin is 10-fold more abundant than beta-carotene, it is expected to be the major protector against the deleterious effects of O(2) ((1)Delta(g)) in Gonyaulax polyedra.  相似文献   

13.
The effect of hydrogen peroxide on the rate of tissue oxygen consumption, on intracellular pH (pH(i)) and on malondialdehyde (MDA) accumulation was studied in isolated body wall tissue of the lugworm Arenicola marina (L.). H2O2 effects were investigated at various levels of pH(i) by changing medium pH (pH(e)). The largest decrease of tissue oxygen consumption (by 17% below controls), as well as the highest degree of MDA accumulation (four-fold compared to control values) after H2O2 exposure were found at acidic pH(e) of 6.4. This was attributed to the higher redox potential of H2O2 in acidic solutions. Oxygen consumption at alkaline pH(e) (8.5) was not affected by H2O2. MDA accumulation in the tissue was considerably lower than at pH(e) 7.4 or 6.4. Despite pH dependent alterations of H2O2 redox potential, we observed more or less constant pH(e) independent acidification of the tissue upon exposure to H2O2. We attributed the acidification to an inhibition of ATP consuming proton equivalent ion transport across the cellular membrane. Inactivation of carrier proteins is discussed to be responsible for the decrease in tissue oxygen consumption. However, with a larger effect on oxygen consumption at acidic pH(e) values, the latter may not be the only explanation, but additional impairment of other energy demanding processes may be involved.  相似文献   

14.
Kasting JF 《Origins of life》1984,14(1-4):75-82
One-dimensional radiative convective and photochemical models are used to estimate the vertical temperature structure and composition of the earth's prebiotic atmosphere. Greatly enhanced CO2 levels (100-1000 times present) are required to keep the mean surface temperature above freezing in the face of decreased solar luminosity during the earth's early history. Such high CO2 partial pressures would have affected the atmospheric oxidation state by facilitating the photochemical production of soluble species including H2O2 and H2CO. Oxidation of ferrous iron in the oceans by H2O2 dissolved in rainwater should have kept the atmospheric H2 mixing ratio above 2x10(-4) and the ground-level O2 mixing ratio below 10(-11), regardless of the magnitude of the rate of volcanic release of reduced gases.  相似文献   

15.
Xu F  Geng ZC  Sun JX  Liu CF  Ren JL  Sun RC  Fowler P  Baird MS 《Carbohydrate research》2006,341(12):2073-2082
Sequential three-stage treatments with 80% EtOH containing 0.2% NaOH, 2.5% H2O2-0.2% EDTA containing 1.5% NaOH and 2.5% H2O2-0.2% TAED containing 1.0% NaOH at 75 degrees C for 3h released 8.0% and 10.4%, 79.1% and 77.0% and 12.9% and 12.5% of the original hemicelluloses from perennial grass and cocksfoot grass, respectively. It was found that the four alkaline peroxide-soluble hemicellulosic fractions contained higher amounts of xylose (33.4-38.2%), uronic acids (9.3-15.3%) and rhamnose (3.0-3.9%), but were lower in glucose (25.1-28.3%), galactose (13.3-15.3%) and mannose (0.4-1.5%) than those of the two alkaline EtOH-soluble hemicellulosic fractions in which glucose (32.9-36.0%), xylose (20.1-22.6%), arabinose (14.1-21.4%), galactose (16.6-19.9%), mannose (4.1-9.9%) and uronic acids (3.4-7.4%) were the major sugar components. 13C NMR spectroscopy confirmed that all the six hemicellulosic fractions were composed of galactoarabinoxylans, 4-O-methylglucuronoarabinoxylans and beta-glucan. In addition, the studies showed that the four alkaline peroxide-soluble hemicellulosic fractions were more linear and acidic and had larger molecular weights (Mw, 28,400-38,650 g mol(-1)) than those of the two alkaline EtOH-soluble hemicellulosic fractions (Mw, 16,460-17,420 g mol(-1)).  相似文献   

16.
The photochemical decomposition of adrenochrome in aqueous and deuterated solutions by visible light was investigated. From the spectroscopic study the disappearance constant k = 4.8 x 10(-5) s-1 as well as quenching constant kq = 2.5 x 10(-1) [s M-1] and isotope effect kD/kH = 2 for singlet oxygen mechanism have been calculated. A possible chemical mechanism for the observed transformation of adrenochrome to the melanin polymer is discussed including the formation of the reactive intermediate species like cytotoxic quinones.  相似文献   

17.
A major pterin was isolated by reverse-phase high-performance liquid chromatography from cellular extract of vegetative cells of Dictyostelium discoideum after perchloric deproteinization and oxidation with acidic iodine. This compound was characterized by its chromatographic behavior, its absorption and fluorescence properties, by its oxidation product with alkaline permanganate, by secondary ion mass spectrometry and by circular dichroism. The final identification was obtained by comparison with authentic materials. It is concluded that the major pterin of D. discoideum is the compound 6-(D-threo-1,2-dihydroxypropyl)-pterin. The name dictyopterin is proposed for this new natural isomer of L-biopterin.  相似文献   

18.
Fundamental studies on the availability of oxygen from the decomposition of H(2)O(2), in vivo, by Xanthomonas campestris, when H(2)O(2) is used as an oxygen source are presented. It was found that the H(2)O(2) added extracellularly (0.1-6 mM) was decomposed intracellularly. Further, when H(2)O(2) was added, the flux of H(2)O(2) into the cell, is regulated by the cell. The steady-state H(2)O(2) flux into the cell was estimated to be 9.7 x 10(-8) mol m(-2) s(-1). In addition, it was proved that the regulation of H(2)O(2) flux was coupled to the protonmotive force (PMF) using experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which disrupts PMF. The coupling constant between the rate of free energy availability from PMF and the rate of reduction of H(2)O(2) flux, was found to be 46.4 mol m(-2) s(-1) J(-1) from simulations using a developed model. Also, the estimated periplasmic catalase concentration was 1.4 x 10(-9) M.  相似文献   

19.
用不同类型高产稻(Oryza sativa L.)粳稻9516、具有粳型成分的两系法亚种间杂交稻培矮64/E32、两优培九(培矮64/9311)和籼型杂交稻X07S/紫恢100、冈优881、汕优63为材料,研究了孕穗期叶片在光氧化条件下的叶绿素荧光特性和膜脂过氧化表现.光氧化处理后,与籼型杂交稻比较,粳稻和具有粳型组分的亚种间杂交稻的PSⅡ原初光化学效率(Fv/Fm)、PSⅡ的线性电子传递的量子效率(ΦPSⅡ)和光化学猝灭系数(qP)下降的较少;超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)诱导的活性较高,活性氧 (O(-)/()2、H2O2)和丙二醛(MDA)的产生积累较少,叶绿素和蛋白质含量下降较少,表现出耐光氧化特性,这与在自然条件下生育后期叶绿素含量变化相一致.相关分析表明它们的耐光氧化特性与结实率密切相关,说明耐光氧化品种抗早衰,有利籽粒充实.这些结果启示我们:从超高产育种出发,兼顾杂种优势利用和抗早衰两方面考虑,在母本不育系中引入粳型成分是一个值得重视的育种策略.  相似文献   

20.
In the present study, we established a simple and physiologically acceptable in vitro assay system to measure H2O2 generated by human immunoglobulin G (IgG) and other proteins. In addition, the effects of various drugs were also tested in this method. We found that UV irradiation (280 nm) of the test solutions for 1 h at 37 degrees C produced suitable conditions to test the effects of these drugs. The test solution contained 100 microg/ml IgG in 50 mM phosphate buffer (pH 7.4), and 1% dimethylformamide (DMF), a solvent used to dissolve each drug. Phosphate anions were preferable for H2O2 generation. H2O2 concentration in the irradiated sample was determined by continuous photometric measurement of absorption (O.D.) at 340 nm for 600 sec. The decrease in O.D. was due to the oxidation of NADPH by H2O2 mediated by the glutathione redox cycle. H2O2 generation was expressed as O.D.(340 nm decrease/400 sec). IgG (100 microg/ml) generated 6-7 microM H2O2/h. With irradiation, most cytokines, proteins and enzymes failed to generate significant amounts of H2O2. The formation of H2O2 from H2O and UV light-induced singlet oxygen (1O2) was demonstrated by the inhibitory effects of 1O2 quenchers. Dexamethasone (IC50: 6 ng/ml = 1.4x10(-8) M) blocked H2O2 generation catalyzed by IgG. This action was not mediated by binding to the glucocorticoid receptor. Piroxicam (IC50: 20 ng/ml = 6.0 x 10(-6) M) and diclofenac.Na (IC50: 500 ng/ml = 1.6 x 10(-5) M), but not indomethacin, also blocked H2O2 generation. The mechanism underlying the inhibition of IgG-catalyzed H2O2 generation is not clear; however, the possibility exists that these drugs intercept, or interfere with, the approach of water molecules at the catalytic interface(s) of the IgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号