首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two isoforms of cyclooxygenase, COX-1 and COX-2, are acetylated by aspirin at Ser-530 and Ser-516, respectively, in the cyclooxygenase active site. Acetylated COX-2 is essentially a lipoxygenase, making 15-(R)-hydroxyeicosatetraenoic acid (15-HETE) and 11-(R)-hydroxyeicosatetraenoic acid (11-HETE), whereas acetylated COX-1 is unable to oxidize arachidonic acid to any products. Because the COX isoforms are structurally similar and share approximately 60% amino acid identity, we postulated that differences within the cyclooxygenase active sites must account for the inability of acetylated COX-1 to make 11- and 15-HETE. Residues Val-434, Arg-513, and Val-523 were predicted by comparison of the COX-1 and -2 crystal structures to account for spatial and flexibility differences observed between the COX isoforms. Site-directed mutagenesis of Val-434, Arg-513, and Val-523 in mouse COX-2 to their COX-1 equivalents resulted in abrogation of 11- and 15-HETE production after aspirin treatment, confirming the hypothesis that these residues are the major isoform selectivity determinants regulating HETE production. The ability of aspirin-treated R513H mCOX-2 to make 15-HETE, although in reduced amounts, indicates that this residue is not an alternate binding site for the carboxylate of arachidonate and that it is not the only specificity determinant regulating HETE production. Further experiments were undertaken to ascertain whether the steric bulk imparted by the acetyl moiety on Ser-530 prevented the omega-end of arachidonic acid from binding within the top channel cavity in mCOX-2. Site-directed mutagenesis was performed to change Val-228, which resides at the junction of the main cyclooxygenase channel and the top channel, and Gly-533, which is in the top channel. Both V228F and G533A produced wild type-like product profiles, but, upon acetylation, neither was able to make HETE products. This suggests that arachidonic acid orientates in a L-shaped binding configuration in the production of both prostaglandin and HETE products.  相似文献   

2.
In vitro evaluations of the selectivity of COX inhibitors are based on a great variety of experimental protocols. As a result, data available on cyclooxygenase (COX)-1/COX-2/5- lipoxygenase (LOX) selectivity of COX inhibitors lack consistency. We, therefore, performed a systematic analysis of the COX-1/COX-2/5-LOX selectivity of 14 compounds with selective COX inhibitory activity (Coxibs). The compounds belonged to different structural classes and were analyzed employing the well-recognized whole-blood assay. 5-LOX activity was also tested on isolated human polymorphonuclear leukocytes. Among COX inhibitors, celecoxib and ML-3000 (licofelone) inhibited 5-LOX in human neutrophils at micromolar ranges. Surprisingly, ML-3000 had no effect on 5-LOX product synthesis in whole-blood assay. In addition, we could show that inhibition of COX pathways did not increase the transformation of arachidonic acid by the 5-LOX pathway.  相似文献   

3.
Prostaglandins, well-known lipid mediators in vertebrate animals, have also shown to play certain regulatory roles in insects and other arthropods acting on reproduction, immune system and ion transport. However, knowledge of their biosynthetic pathways in arthropods is lacking. In the present study, we report the cloning and expression of cyclooxygenase (COX) from amphipod crustaceans Gammarus spp and Caprella spp. The amphipod COX proteins contain key residues shown to be important for cyclooxygenase and peroxidase activities. Differently from all other known cyclooxygenases the N-terminal signal sequence of amphipod enzymes is not cleaved during protein expression in mammalian cells. The C-terminus of amphipod COX is shorter than that of mammalian isoforms and lacks the KDEL(STEL)-type endoplasmic reticulum retention/retrieval signal. Despite that, amphipod COX proteins are N-glycosylated and locate similarly to the vertebrate COX on the endoplasmic reticulum and nuclear envelope. Both amphipod COX mRNAs encode functional cyclooxygenases that catalyze the transformation of arachidonic acid into prostaglandins. Using bioinformatic analysis we identified a COX-like gene from the human body louse Pediculus humanus corporis genome that encodes a protein with about 30% sequence identity with human COX-1 and COX-2. Although the COX gene is known to be absent from genomes of Drosophila sp., Aedes aegypti, Bombyx mori, and other insects, our studies establish the existence of the COX gene in certain lineages within the insect world.  相似文献   

4.
Prostaglandin H Synthase (PGHS) is a bi-functional enzyme with a cyclooxygenase (COX) activity and a functionally linked peroxidase (POX) activity that exists in two isoforms (COX-1, COX-2). Non-steroidal anti-inflammatory drugs (NSAIDs), including the selective COX-2 inhibitors, block COX activity while leaving POX activity unscathed. Recently, some selective COX-2 inhibitors were withdrawn from the market due to elevated cardiovascular risk in placebo-controlled trials. Mice deficient for PGHS2 were developed in 1995 and through numerous subsequent studies have revealed significant roles in renal development, ductus arteriosus patency/closure, skin carcinogenesis and cardiovascular function. In this short review, we compare a novel genetic COX-2 selective inhibition mouse model with the originally described COX-2 null mice in these different physiological functions.  相似文献   

5.
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds ( 3a – 3j ) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50=0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.  相似文献   

6.
New pyrazole and pyrazoline derivatives have been synthesized and their ability to inhibit ovine COX-1/COX-2 isozymes was evaluated using in vitro cyclooxygenase (COX) inhibition assay. Among the tested compounds, N-((5-(4-chlorophenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methylene)-3,5-bis(trifluoromethyl)aniline 8d exhibit optimal COX-2 inhibitory potency (IC(50)=0.26 lM) and selectivity (SI)=>192.3] comparable with reference drug celecoxib (IC(50) value of 0.28 lM and selectivity index of 178.57). Moreover, the anti-inflammatory activity of selected compounds, which are the most selective COX-2 inhibitors in the COX inhibition assay, was investigated in vivo using carrageenan-induced rat paw edema model. Molecular modeling was conducted to study the ability of the active compounds to bind into the active site of COX-2 which revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

7.
We recently reported that the hydroxyiminoethanone derivative, (E)-OXM, behaves as a highly selective COX-1 inhibitor (COX-1 SI = 833), and also an interesting scaffold with unique characteristics. In the current study, a comprehensive crystallographic and computational study was performed to elucidate its conformational stability and pharmacological activity. Its conformational energy was studied at the B3LYP/6-311G** level of theory and compared to the single-crystal X-ray diffraction data. In addition, computational studies of three structurally different stilbenoid derivatives used as selective COX-1 or COX-2 inhibitors were undertaken to predict their COX selectivity potentials. Flexible docking was performed for all compounds at the active site of both COX-1 and COX-2 enzymes by considering some of the key residues as flexible during the docking operation. In the next step, molecular dynamic simulation and binding free energy calculations were performed by MM-PBSA. Final results were found to be highly dependent on the atomic charges of the inhibitors and the choice of force field used to calculate the atomic charges. The binding conformation of the hydroxyiminoethanone derivative is highly correlated with the type of COX isoform inhibited. Our predictive approach can truly predict the cyclooxygenase inhibition selectivity of stilbenoid inhibitors.  相似文献   

8.
High-throughput screening (HTS) involves testing of compound libraries against validated drug targets using quantitative bioassays to identify 'hit' molecules that modulate the activity of target, which forms the starting point of a drug discovery effort. Eicosanoids formed via cyclooxygenase (COX) and lipoxygenase (LOX) pathways are major players in various inflammatory disorders. As the conventional non-steroidal anti-inflammatory drugs (NSAIDs) that inhibit both the constitutive (COX-1) and the inducible (COX-2) isoforms have gastric and renal side effects and the recently developed COX-2 selective anti-inflammatory drugs (COXIBs) have cardiac side effects, efforts are being made to develop more potent and safer antiinflammatory drugs. Current assay methods for these enzymes, such as oxygraphic, radioisotopic, spectrophotometric etc. are not compatible for screening of large number of compounds as in drug discovery programs. In the present study, HTS-compatible assays for COX-1, COX-2 and 5-LOX were developed for screening of compound libraries with the view to identify potential anti-inflammatory drug candidates. A spectrophotometric assay involving co-oxidation of tetramethyl-p-phenylene diamine (TMPD) during the reduction of prostaglandin G2 (PGG2) to PGH2 was adopted and standardized for screening of compounds against COX-1 and COX-2. Similarly, the HTS-compatible FOX (ferrous oxidation-xylenol orange) based spectrophotometric assay involving the formation of Fe3+/xylenol orange complex showing absorption in the visible range was developed for screening of compounds against 5-LOX.  相似文献   

9.
Traditional NSAIDs, selective cyclooxygenase (COX)-2 inhibitors, and inhibitors of nitric oxide synthase (NOS) impair the healing of preexisting gastric ulcers. However, the role of COX-1 (with or without impairment of COX-2) and the interaction between COX and NOS isoforms during healing are less clear. Thus we investigated healing and regulation of COX and NOS isoforms during ulcer healing in COX-1 and COX-2 deficiency and inhibition mouse models. In this study, female wild-type COX-1(-/-) and COX-2(-/-) mice with gastric ulcers induced by cryoprobe were treated intragastrically with vehicle, selective COX-1 (SC-560), COX-2 (celecoxib, rofecoxib, and valdedoxib), and unselective COX (piroxicam) inhibitors. Ulcer healing parameters, mRNA expression, and activity of COX and NOS were quantified. Gene disruption or inhibition of COX-1 did not impair ulcer healing. In contrast, COX-2 gene disruption and COX-2 inhibitors moderately impaired wound healing. More severe healing impairment was found in dual (SC-560 + rofecoxib) and unselective (piroxicam) COX inhibition and combined COX impairment (in COX-1(-/-) mice with COX-2 inhibition and COX-2(-/-) mice with COX-1 inhibition). In the ulcerated repair tissue, COX-2 mRNA in COX-1(-/-) mice, COX-1 mRNA in COX-2(-/-) mice, and, remarkably, NOS-2 and NOS-3 mRNA in COX-impaired mice were more upregulated than in wild-type mice. This study demonstrates that COX-2 is a key mediator in gastric wound healing. In contrast, COX-1 has no significant role in healing when COX-2 is unimpaired but becomes important when COX-2 is impaired. As counterregulatory mechanisms, mRNA of COX and NOS isoforms were increased during healing in COX-impaired mice.  相似文献   

10.
11.
In vertebrates, the synthesis of prostaglandin hormones is catalyzed by cyclooxygenase (COX)-1, a constitutively expressed enzyme with physiological functions, and COX-2, induced in inflammation and cancer. Prostaglandins have been detected in high concentrations in certain corals, and previous evidence suggested their biosynthesis through a lipoxygenase-allene oxide pathway. Here we describe the discovery of an ancestor of cyclooxygenases that is responsible for prostaglandin biosynthesis in coral. Using a homology-based polymerase chain reaction cloning strategy, the cDNA encoding a polypeptide with approximately 50% amino acid identity to both mammalian COX-1 and COX-2 was cloned and sequenced from the Arctic soft coral Gersemia fruticosa. Nearly all the amino acids essential for substrate binding and catalysis as determined in the mammalian enzymes are represented in coral COX: the arachidonate-binding Arg(120) and Tyr(355) are present, as are the heme-coordinating His(207) and His(388); the catalytic Tyr(385); and the target of aspirin attack, Ser(530). A key amino acid that determines the sensitivity to selective COX-2 inhibitors (Ile(523) in COX-1 and Val(523) in COX-2) is present in coral COX as isoleucine. The conserved Glu(524), implicated in the binding of certain COX inhibitors, is represented as alanine. Expression of the G. fruticosa cDNA afforded a functional cyclooxygenase that converted exogenous arachidonic acid to prostaglandins. The biosynthesis was inhibited by indomethacin, whereas the selective COX-2 inhibitor nimesulide was ineffective. We conclude that the cyclooxygenase occurs widely in the animal kingdom and that vertebrate COX-1 and COX-2 are evolutionary derivatives of the invertebrate precursor.  相似文献   

12.
13.
14.
15.
New arylhydrazone derivatives and a series of 1,5-diphenyl pyrazoles were designed and synthesized from 1-(4-chlorophenyl)-4,4,4-trifuorobutane-1,3-dione 1. The newly synthesized compounds were investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw oedema model. Moreover, they were tested for their inhibitory activity against ovine COX-1 and COX-2 using an in vitro cyclooxygenase (COX) inhibition assay. Some of the new compounds (2f, 6a and 6d) showed a reasonable in vitro COX-2 inhibitory activity, with IC?? value of 0.45 μM and selectivity index of 111.1. A virtual screening was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. Docking study of the synthesized compounds 2f, 6a and 6d into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

16.
17.
The cyclooxygenases (COX-1 and COX-2) generate prostaglandin H(2) from arachidonic acid (AA). In its catalytically productive conformation, AA binds within the cyclooxygenase channel with its carboxylate near Arg-120 and Tyr-355 and ω-end located within a hydrophobic groove above Ser-530. Although AA is the preferred substrate for both isoforms, COX-2 can oxygenate a broad spectrum of substrates. Mutational analyses have established that an interaction of the carboxylate of AA with Arg-120 is required for high affinity binding by COX-1 but not COX-2, suggesting that hydrophobic interactions between the ω-end of substrates and cyclooxygenase channel residues play a significant role in COX-2-mediated oxygenation. We used structure-function analyses to investigate the role that Arg-120 and residues lining the hydrophobic groove play in the binding and oxygenation of substrates by murine (mu) COX-2. Mutations to individual amino acids within the hydrophobic groove exhibited decreased rates of oxygenation toward AA with little effect on binding. R120A muCOX-2 oxygenated 18-carbon ω-6 and ω-3 substrates albeit at reduced rates, indicating that an interaction with Arg-120 is not required for catalysis. Structural determinations of Co(3+)-protoporphyrin IX-reconstituted muCOX-2 with α-linolenic acid and G533V muCOX-2 with AA indicate that proper bisallylic carbon alignment is the major determinant for efficient substrate oxygenation by COX-2. Overall, these findings implicate Arg-120 and hydrophobic groove residues as determinants that govern proper alignment of the bisallylic carbon below Tyr-385 for catalysis in COX-2 and confirm nuances between COX isoforms that explain substrate promiscuity.  相似文献   

18.
Acetylation of Ser-530 of sheep prostaglandin endoperoxide (PGG/H) synthase by aspirin causes irreversible inactivation of the cyclooxygenase activity of the enzyme. To determine the catalytic function of the hydroxyl group of Ser-530, we used site-directed mutagenesis to replace Ser-530 with an alanine. Cos-1 cells transfected with expression vectors containing the native (Ser-530) or mutant (Ala-530) cDNAs for sheep PGG/H synthase expressed comparable cyclooxygenase and hydroperoxidase activities. Km values for arachidonate (8 microM) and ID50 values for reversible inhibition by the cyclooxygenase inhibitors, flurbiprofen (5 microM), flufenamate (20 microM), and aspirin (20 mM), were also the same for both native and mutant PGG/H synthases; however, only the native enzyme was irreversibly inactivated by aspirin. Thus, the "active site" Ser-530 of PGG/H synthase is not essential for catalysis or substrate binding. Apparently, acetylation of native PGG/H synthase by aspirin introduces a bulky sidechain at position 530 which interferes with arachidonate binding. In related studies, a cDNA for mouse PGG/H synthase was cloned and sequenced. A sequence of 35 residues with Ser-530 at the midpoint was identical in the two proteins. Thus, Ser-530 does lie in a highly conserved region, probably involved in cyclooxygenase catalysis. Sequence comparisons of mouse and sheep PGG/H synthase also provided information about the heme-binding site of the enzyme. The sheep HYPR sequence (residues 274-277), which had been proposed to form a portion of the distal heme-binding site, is not conserved in the mouse PGG/H synthase, suggesting that this region is not the distal heme-binding site. One sequence, TIWLREHNRV (residues 303-312 of the sheep enzyme), is very closely related to the sequence TLW(L)LREHNRL common to thyroid peroxidase and myeloperoxidase. The histidine in this latter sequence is the putative axial heme ligand of these peroxidases. We suggest that the histidine (His-309) of sheep PGG/H synthase sequence is the axial heme ligand of this enzyme.  相似文献   

19.
20.
Endothelium-derived cyclooxygenase (COX) products regulatecerebral vascular tone in newborn pigs. Both COX-1 and COX-2 are constitutively expressed in endothelial cells from newborn pig cerebralmicrovessels. We investigated the role of protein phosphorylation inthe regulation of COX activity. The protein tyrosine phosphatase (PTP)inhibitors phenylarsine oxide, vanadate, and benzylphosphonic acidrapidly stimulated COX activity, whereas the protein tyrosine kinaseinhibitors, genistein and tyrphostins, inhibited it. Protein synthesisinhibitors did not reverse the stimulation of COX activity evoked byPTP inhibitors. Similar changes were observed in other vascular cellsfrom newborn pigs that also express COX-1 and COX-2 (cerebralmicrovascular smooth muscle cells and aortic endothelial cells) but notin human umbilical vein endothelial cells or Swiss 3T3 fibroblasts thatexpress COX-1 only. Tyrosine-phosphorylated proteins wereimmunodetected in endothelial cell lysates. COX-2 immunoprecipitatedfrom 32P-loaded endothelial cellsincorporated 32P that wasincreased by PTP inhibitors. COX-2, but not COX-1, was detected inendothelial fractions immunoprecipitated with anti-phosphotyrosine.These data indicate that tyrosine phosphorylation posttranslationallyregulates COX activity in newborn pig vascular cells and that COX-2 isa substrate for phosphorylation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号